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When we have to study a number field or an elliptic curve defined over Q,
some groups may appear which make the explicit computations more compli-
cated and which are, in a way, not very “welcome”. These groups are the class
groups of number fields and the Tate-Shafarevich groups of elliptic curves.
A direct study of their general behavior is a very difficult problem. In [3],
Cohen and Lenstra explained how to obtain precise conjectures for this pur-
pose using a general fundamental heuristic principle. In [6], it is shown how
to adapt the Cohen-Lenstra idea to Tate-Shafarevich groups using the anal-
ogy between number fields and elliptic curves. Understanding the behavior of
Tate-Shafarevich groups is important in itself first but it may also be useful
for studying the distribution of the special values of the L-functions L(E, s)
attached to elliptic curves. Indeed, the Birch and Swinnerton-Dyer conjecture
relates the value L(E, 1) to natural invariants of E including the order of the
Tate-Shafarevich group. This paper sketches the Cohen-Lenstra philosophy in
both cases of class groups and of Tate-Shafarevich groups. It is organized as
follows:

In the first section, we describe the analogy between number fields and ellip-
tic curves defined over Q. In the second section, we recall the Cohen-Lenstra
heuristic for class groups. Using the analogy of the first section, we adapt,
in the third section, the heuristic for Tate-Shafarevich groups. Finally, we re-
strict the heuristic to the case of families of quadratic twists of an elliptic curve.
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1 Analogy between number fields and elliptic

curves defined over Q

In [6], we made a study of Tate-Shafarevich groups of elliptic curves defined
over Q similar to the one made in [3] about class groups of number fields. To
do this, we used the deep analogy between number fields and elliptic curves
defined over Q on the one hand and class groups and Tate-Shafarevich groups
on the other hand. This analogy is summarized in this section. First, we give
the following table which states the correspondences between the main invari-
ants of number fields and of elliptic curves defined over Q:

Elliptic curve E/Q Number field K
E(Q)tors rational torsion points � U(K)tors roots of unity
E(Q) Mordell-Weil group of E � U(K) unit group of K
N(E) conductor of E � |DK | absolute value of

the discriminant of K
X(E) Tate-Shafarevich group of E � Cl(K) class group of K
R(E) regulator of E � R(K) regulator of K
E(Z) integer points on E � exceptional units of K

The torsion parts of the groups E(Q) and U(K) are both finite and easy to
determine; furthermore they play the same role. For a number field K, the
unit group U(K) is a finitely generated abelian group and it is not difficult to
compute its rank r since we have r = r1 + r2 − 1 where r1 (resp. r2) is the
number of real (resp. complex) places of K. However, it may be difficult to
find the units of K. The Mordell-Weil group of an elliptic curve E(Q) is a
finitely generated abelian group, its rank can be predicted by the Birch and
Swinnerton-Dyer conjecture and it may also be difficult to compute rational
points on E(Q) if they have large denominators. The primes dividing the
absolute value of the discriminant or the conductor are rather special in both
cases. Another property is that there are only finitely many number fields
(resp. elliptic curves/Q) up to isomorphism with a bounded absolute value
of the discriminant (resp. conductor). The class group of a number field is
a finite abelian group and measures in a way the obstruction of the ideals to
be principal. Whenever this group is non-trivial, the arithmetic in K is more
complicated. Similarly, the Tate-Shafarevich group X of an elliptic curve is a
finite abelian group (here the finite part is only conjectural but we assume this
conjecture to be true) and it measures the obstruction of the “local-global”
principle. When X is non-trivial, it can be more difficult to study the elliptic
curve. The regulator of a number field (resp. an elliptic curve) is the absolute
value of the determinant of a certain matrix which is defined with the help of
a basis of the unit group (resp. a basis of the Mordell-Weil group). In the
case of a real quadratic field (the rank of the unit group of such a field is 1),
as well as in the case of a rank 1 elliptic curve, there exist analytic processes
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to find a unit of the number field and a non-torsion point of the elliptic curve
(the processes are the Gauss construction for number fields and the Heegner
point construction for elliptic curves). The integer points on an elliptic curve
form a finite subset of the Mordell-Weil group and are exact analogues of the
exceptional units of a number field; exceptional units are units u such that 1−u
is also a unit and they form a finite subset of the unit group (this analogy was
pointed out by H. Cohen). Finally, for a number field, we have the following
exact sequence:

1→ U(K)/U(K)p → Sp(K)→ Cl(K)[p]→ 1

where Sp(K) = Vp(K)/K∗p with Vp(K) = {γ ∈ K∗|γZK = Ip for some ideal
I ⊂ K} and where ZK is the ring of integers of K. The set Vp(K) is indeed
a subgroup of the multiplicative group K∗: it is called the group of p-virtual
units. The group Sp(K) is called the p-Selmer group of the number field K
(we refer to [2] for all this terminology and for some more information about
those groups).
If L(K, s) is the L-function associated to K (i.e. the Dedekind zeta function),
we have:

L(K, s) ∼s=0 −s
rR(K)|Cl(K)|

|U(K)tors|

where r = r1 + r2 − 1 is the the rank of U(K).
For an elliptic curve E:

1→ E(Q)/pE(Q)→ Sp(E)→ X(E)[p]→ 1

where Sp(E) is the p-Selmer group of E (cf. [11]), and if L(E, s) is the L-
function attached to E, then the Birch and Swinnerton-Dyer conjecture pre-
dicts that:

L(E, s) ∼s=1 (s− 1)r
R(E)|X(E)|

(|E(Q)tors|)2
cΩ (1.1)

where r is the rank of the Mordell-Weil group, c is the product of the Tamagawa
numbers (it is a small integer) and Ω is the real period of E.
The exact sequences and the estimates of the L-functions are exact analogues.
However, we should note that the main terms in the right-hand side of (1.1)
are perfect squares:

• R(E) is the determinant of a Gram matrix and so is naturally the square
of a determinant.

• The order of the group X(E) is a square (we assume it is finite).

• In the denominator, there is the square of the order of E(Q)tors.

Cassels proved that there exists a bilinear alternating pairing:

β : X×X −→ Q/Z
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which is non-degenerate if the Tate-Shafarevich group is finite; we assume X

to be a finite group. Then we will say that a couple (G, β) is a group of type
S, if G is a finite abelian group and:

β : G×G −→ Q/Z

is a non-degenerate alternating bilinear pairing.
Two groups (G1, β1) and (G2, β2) of type S are said to be isomorphic if there
exists an isomorphism σ : G1 → G2 such that:

β2(σ(x), σ(y)) = β1(x, y) for all x, y ∈ G1.

If (G, β) is a group of type S, then G � H × H where H is a finite abelian
group; in particular, this explains why the order of a Tate-Shafarevich group
is a perfect square. Conversely, every group G � H ×H, where H is a finite
abelian group, can be endowed with a unique (up to isomorphism) structure
of group of type S.

In the sequel, the letter p will always denote a prime number. For G a finite
abelian group, we denote by Gp the p-part of G: that is Gp is the subgroup of
G consisting of elements of order a power of p. Note that every finite abelian
group can be written as the direct sum of its p-group. The subgroup Gp is thus
a p-group (i.e. |Gp| = p

n for some n ∈ N) and then can be uniquely written
as:

Gp � Z/pa1Z× Z/pa2Z · · · × Z/parZ

for some (unique) positive integers a1 � a2 � . . . � ar ∈ N. The number
r is called the p-rank of G. It is denoted by rp(G) and is also equal to the
dimension over Z/pZ of the Z/pZ-vector space G/pG.

The symbol
�

G(n) (resp.
�

GS(n)) means that the sum is over all isomorphism

classes of finite abelian groups (resp. groups of type S) of order n. Note that�
GS(n) ≡ 0 if n is not a perfect square. Finally, Aut(G) denotes the group

of automorphisms of G and AutS(G) the group of automorphisms of (G, β)
which preserve the pairing β.

2 Heuristics on class groups of quadratic num-

ber fields

The class group measures in a way how difficult it is to perform the explicit
computations related to some underlying arithmetical problem. Then, we
would like to understand how it behaves in general; are we lucky if, for exam-
ple, the p-part of the class group of some number field is trivial or are they
often trivial? In fact, for those questions, we have to restrict our study to
natural families of number fields whose unit groups have the same rank. Un-
fortunately, and even for such natural families, a direct study of this problem
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is completely out of reach nowadays. In [3], however, Cohen and Lenstra pro-
posed a wonderful heuristic principle that allows to give conjectural answers
to many questions related to the general behavior of class groups in a natural
family. We now sketch their philosophy in the first case, that is, in the case of
class groups attached to quadratic imaginary number fields.

2.1 Imaginary quadratic number fields

Imaginary quadratic number fields have the formK = Q(
√
DK) where DK < 0

is a fundamental discriminant. The unit group is a finite group (its rank is 0)
and the discriminant of K is DK .

For our purpose, we let F be a C-valued function defined on isomorphism
classes of finite abelian groups (because class groups are finite abelian groups).

Examples. We will look at the following ones:

Fp-triv(G) =

�
1 if Gp � {0}
0 else

Fcyclic(G) =

�
1 if G is cyclic
0 else

Fp−rank(G) = prp(G)

Then we consider the following limit:

MCl,0(F ) = lim
X→∞








�

|DK |�X

F (Cl(K))

�

|DK |�X

1








(2.1)

where the sums are over all quadratic imaginary number fields K whose ab-
solute value of the discriminant is bounded by X. Note that there are only
finitely many such number fields, so that the term in the brackets of (2.1) is
meaningful.
We have two problems: does the limit exist? If yes, what is its value? One
moment’s thought tells us that, in fact, this is exactly what we want to answer.
For example, if we consider the function F = Fp-triv, then if the limit in (2.1)
exists for F , this limit is precisely the frequency of class groups with trivial
p-parts. But, as we mentioned above we cannot study this limit directly. The
fundamental idea of Cohen and Lenstra is to say that class groups behave as
random finite abelian groups G except that they have to be weighted by:

1

|Aut(G)|
(2.2)

More precisely, we consider the following average:
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Definition 1. Let F be as above. The 0-average of F over finite abelian groups
is defined by:

MG,0(F ) = lim
X→∞









�

n�X

�

G(n)

F (G)

|Aut(G)|

�

n�X

�

G(n)

1

|Aut(G)|








.

If F is the characteristic function of a property P , we will speak of 0-
probability instead of 0-average.

From the theory of genera, the 2-part of the class group Cl(K) behaves in
a very special way and so we have to exclude it from our discussion and we
denote by:

Cl0(K) = {x ∈ Cl(K) such that x has odd order}

the odd part of Cl(K).
If F is a function as above, we define the function F ◦ odd to be the function:
F ◦ odd : G �→ F (G0), where G0 denotes the odd part of G. We can now
formulate the Cohen-Lenstra heuristic:

Fundamental heuristic assumption for imaginary quadratic fields.

For all reasonable functions F , we have:

MCl,0(F ◦ odd) =MG,0(F ◦ odd)

The magic of the Cohen-Lenstra heuristic is that it works! Indeed, there are
strong evidences to believe in this assumption. Furthermore, the value of
MG,0(F ◦ odd) can be computed for many interesting functions and we can be
confident enough in the results it produces. In practice, in order to compute
MG,0(F ), we treat the numerator and the denominator of the definition of
MG,0(F ) separately. For this purpose we need the following Tauberian theo-
rem:

Theorem 2. Let (c(n))n�1 be a sequence of non-negative numbers and D(z) =�
n c(n)/n

z. If D(z) converges for �(z) > 0 and if there exists C ∈ C such
that D(z) − C/z can be analytically continued to an open subset containing
�(z) � 0, then, as X tends to infinity, we have:

�

n�X

c(n) ∼ C log(x)

In view of the definition 1 we would like to apply this theorem with c(n) =�
G(n) F (G)/|Aut(G)|, leading to:
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Definition 3. Let F be a function as above. We define the two following
Dirichlet series:

ζG(z) =
�

n�1

1

nz

�

G(n)

1

|Aut(G)|

ζG,F (z) =
�

n�1

1

nz

�

G(n)

F (G)

|Aut(G)|

Cohen and Lenstra proved (cf. [3]):

Theorem 4. We have:

ζG(z) =
∞�

j=1

ζ(z + j)

where ζ is the Riemann zeta function.

From theorem 4 and theorem 2 we deduce a very good estimate for the
denominator of MG,0(F ):

Corollary 5. We have:

�

n�X

�

G(n)

1

|Aut(G)|
∼

∞�

j=2

ζ(j) log(X).

For the numerator of MG,0(F ) we do the same; in general for reasonable
functions F , the Dirichlet series ζG,F satisfies the conditions of theorem 2, and
we can deduce that:

�

n�X

�

G(n)

F (G)

|Aut(G)|
∼ C log(X)

(for convenience C = 0 means that the left hand-side is O(1)). We then obtain:

MG,0(F ) =
C

�∞
j=2 ζ(j)

By the same method we can compute MG,0(F ◦ odd) and by the heuristic
assumption this is the average of F over class groups.

2.2 Real quadratic fields

This case is a little bit more subtle since the rank of the unit group is 1.
More generally, when the unit group is not a finite group, the Cohen-Lenstra
heuristic is more technical ([3], [4]). In our case, the philosophy is to say that
the odd part of a class group associated to a real quadratic field behaves as a
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random finite abelian group G of odd order divided by a random cyclic sub-
group (we still have the weight 1/|Aut(G)|). With this idea we can also define
a “1-average” over finite abelian groupMG,1(F ) and the heuristic predicts that:

Fundamental heuristic assumption for real quadratic fields: For all
reasonable functions F we have:

MCl,1(F ◦ odd) =MG,1(F ◦ odd)

where MCl,1(F ) is defined as in (2.1) except that the sums are over real
quadratic number fields.

In fact, Cohen and Lenstra defined the u-average MG,u(F ) of F over finite
abelian groups for all u ∈ N. In general, the u-average can be computed by a
straightforward generalization of the method explained above ([3]):

Theorem 6. Let F be a function as above, u ∈ N and suppose that ζG,F

satisfies the conditions of theorem 2 then:

if u = 0 then MG,0(F ) = lim
z→0

ζG,F (z)

ζG(z)
,

if u > 0 then MG,u(F ) =
ζG,F (u)

ζG(u)
.

2.3 Examples

Let us consider the function F = Fp-triv, where p �= 2; then F ◦ odd = F . The
function ζG,F is exactly the function ζG without its p-part. From theorem 4
we have:

ζG(z) =
∞�

j=1

ζ(z + j)

=
�

j

�

q prime

�

1−
1

qz+j

�−1

=
�

q prime

�

j

�

1−
1

qz+j

�−1

.

So the term
�

j

�
1− 1

pz+j

�−1

is exactly the p-Euler factor of ζG(z). Then we

deduce:

ζG,F (z) =
�

q �=p

�

j

�

1−
1

qz+j

�−1

= ζG(z)
�

j

�

1−
1

pz+j

�

.
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Finally, we obtain:

MG,0(F ) =

∞�

j=1

�

1−
1

pj

�

MG,1(F ) =
∞�

j=1

�

1−
1

pj+1

�

.

By the Cohen-Lenstra heuristic, we deduce the conjecture:

Conjecture 7. Let p �= 2.
The probability that p divides the order of the class group of an imaginary
quadratic field is equal to:

1−
∞�

j=1

�

1−
1

pj

�

=
1

p
+

1

p2
−

1

p5
· · ·

The probability that p divides the order of the class group of a real quadratic
field is equal to:

1−

∞�

j=1

�

1−
1

pj+1

�

=
1

p2
+

1

p3
+

1

p4
· · ·

Let us consider some other examples that can be found in [3] (they are a
little more technical because they involve the p-rank of finite abelian groups).
- The u-average of the function F = Fcyclic ◦ odd is equal to:

MG,u(F ) =

�
j�u+2(1− 1/2j)

1 + 1/2u+1

�

p

�
1− 1/p+ 1/pu+2

1− 1/p

� �

j�2

1

ζ(u+ j)

In particular, MG,0(F ) ≈ 0.98.
- The u-average of the function F (G) = prp(G) is 1+1/pu (note that F ◦odd = F
if p �= 2). In particular, if p = 3, the 0-average of F is equal to 2 and the 1-
average of F is 4/3.

The Cohen-Lenstra heuristics have been checked by many numerical computa-
tions and they are very useful for understanding the behavior of class groups,
even if the results are conjectural. For example, they explain why it is so dif-
ficult to find a non-cyclic Cl0(K).
The first theoretical result was obtained by Davenport and Heilbronn who
proved (before the heuristics were formulated) that the average of the func-
tion 3r3(Cl(K)) is equal to 2 (resp. 4/3) in the case of imaginary (resp. real)
quadratic fields.
The Cohen-Lenstra heuristics extend to many other families of number fields,
and we refer to [3], [4], [15] for some generalizations.
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3 Heuristics on Tate-Shafarevich groups of el-

liptic curves

As with class groups, we are annoyed by Tate-Shafarevich groups of elliptic
curves. Thus, we use the analogy described in the first section and sketch the
work in [6] which shows how the Cohen-Lenstra philosophy can be adapted to
our case. To do this, we take into account the particular structure of Tate-
Shafarevich groups, i.e., the structure of groups of type S.

3.1 Rank 0 case

By analogy, we consider a C-valued function F defined on the isomorphism
classes of groups of type S.

Examples. We will look at the following ones:

Fp-triv(G) =

�
1 if Gp � {0}
0 else

Fcyclic(G) =

�
1 if G is the square of a cyclic group
0 else

Fp-rank=2r(G) =

�
1 if rp(G) = 2r
0 else

Note that we simply write G for a group of type S instead of (G, β), since there
is only one group structure of type S for each group (up to isomorphism). We
consider the following limit:

MX,0
(F ) = lim

X→∞








�

N(E)�X

F (X(E))

�

N(E)�X

1








(3.1)

where the sums are over all isomorphism classes of rank 0 elliptic curves whose
conductor is bounded by X (there are only finitely many such isomorphism
classes). As for class groups, we have two questions: does the limit exist? If
yes, what is its value? Furthermore, questions of this type are exactly what
we would like to answer...
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Definition 8. We define:

ζGS(z) =
�

n�1

1

nz

�

GS(n)

1

|AutS(G)|

ζGS ,F (z) =
�

n�1

1

nz

�

GS(n)

F (G)

|AutS(G)|

We can prove:

Theorem 9. We have:

ζGS(z) =

∞�

j=1

ζ(2z + 2j + 1).

The main difference with finite abelian groups is that the function ζGS(z)
converges for z = 0 and that we have:

Corollary 10.

ζGS(0) =
�

n�1

�

GS(n)

1

|AutS(G)|
=

∞�

j=1

ζ(2j + 1).

So, we have to adapt the definition for average over groups of type S:

Definition 11. Let F be as above and α � 1 (we will see later why we need
α). Then, the 0-average of F over groups of type S is defined by:

MGS ,0(F, α) = lim
X→∞









�

n�X

�

GS(n)

F (G)|G|α

|AutS(G)|

�

n�X

�

GS(n)

|G|α

|AutS(G)|








.

The exact analogue of definition 1 would have been to take α = 0. But as we
have shown before, the denominator converges for α = 0 and this does not give
a relevant average. For α � 1 the denominator diverges. Another reason to
insert α in definition 11 is that for reasonable functions F , the limitMG,0(F, α)
does not depend on α if α � 1 (this fact is an application of a generalization of
theorem 2). In particular, it is not true that the limit does not depend on α if
α < 1. The same phenomenon already occurred for finite abelian groups; we
could take the weight |G|α/|Aut(G)| in (2.2) and the results would not have
depended on α for α � 0. Once again, the situation is analogous to the one of
class groups.
Since MG,0(F, α) does not depend on α for α � 1, we let:

MGS ,0(F ) =MGS ,0(F, 1).
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Then we can computeMG,0(F ) by using theorem 2 as for finite abelian groups.

For instance, the function ζGS(z − 1) =
�

n
1
nz

�
GS(n)

|G|

|AutS(G)|
converges for

�(z) > 0 and satisfies the conditions of theorem 2. Thus we deduce the
following estimate for the denominator of MG,0(F ):

Corollary 12. As X tends to ∞ we have:

�

n�X

�

GS(n)

|G|

|AutS(G)|
∼

1

2

∞�

j=1

ζ(2j + 1) log(X).

As regards the numerator, we expect that the function ζGS ,F (z−1) satisfies
the conditions of theorem 2 so that:

�

n�X

�

GS(n)

F (G)|G|

|AutS(G)|
∼ C log(X).

And we would have:

MGS ,0(F ) =
2C

�∞
j=1 ζ(2j + 1)

.

Now the heuristic idea is to assert that Tate-Shafarevich groups of rank 0 el-
liptic curves behave as random groups G of type S except that they have to
be weighted by the weight |G|/|AutS(G)|.

Fundamental heuristic assumption for rank 0 elliptic curves. For
all reasonable functions F we have:

MX,0
(F ) =MGS ,0(F ).

3.2 Rank 1 case

As for class groups, the higher rank cases are a little bit more technical. In
case of rank 1, we are interested in the following limit:

MX,1
(F ) = lim

X→∞








�

N(E)�X

F (X(E))

�

N(E)�X

1








(3.2)

where now the sums are over all isomorphism classes of rank 1 elliptic curves
with conductor bounded by X.
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Definition 13. Let F be as above and u � 0. We define (cu(F, n))n�1 by:

�

n�1

cu(F, n)

nz
=
ζGS ,F (z + u)ζGS(z)

ζGS(z + u)
.

The u-average of F over groups of type S is:

MGS ,u(F ) = lim
X→∞









�

n�X

ncu(F, n)

�

n�X

�

GS(n)

|G|

|AutS(G)|








.

Remarks. For reasonable functions F , the average MGS ,u(F ) does not
depend on α � 1 if we replace in the definition ncu(F, n) by n

αcu(F, n) and
|G| by |G|α. For u = 0, this is the same definition as in the section above.

Theorem 2 allows us to compute u-averages in many cases:

Proposition 14. Let F be as above and suppose that ζGS ,F (z−1) satisfies the
conditions of theorem 2. We have:

if u = 0 then MGS ,0 = lim
z→0

ζGS ,F (z − 1)

ζGS(z − 1)

if u > 0 then MGS ,u(F ) =
ζGS ,F (u− 1)

ζGS(u− 1)

Fundamental heuristic assumption for rank 1 elliptic curves. For
all reasonable functions F we have:

MX,1
(F ) =MGS ,1(F ).

Note that in [6], we formulated the heuristic for higher ranks by taking the
u/2-average for the family of rank u elliptic curves. So the heuristic assumption
here is a correction of [6] in the rank 1 case.

3.3 Examples

Let us consider the function F = Fp-triv. Then, as for finite abelian groups,
we have:

ζGS ,F (z) = ζGS(z)

∞�

j=1

�

1−
1

p2z+2j+1

�

.

So we obtain the u-average of F :

MGS ,u(F ) =
∞�

j=1

�

1−
1

p2u+2j−1

�

.
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Then, we deduce:
-The 0-probability that p divides the order of a group of type S is equal to:

f0(p) = 1−

∞�

j=1

�

1−
1

p2j−1

�

=
1

p
+

1

p3
−

1

p4
+

1

p5
−

1

p6
· · · (3.3)

In particular f0(2) ≈ 0.58, f0(3) ≈ 0.36 and f0(5) ≈ 0.21.

-The 1-probability that p divides the order of a group of type S is equal to:

f1(p) = 1−

∞�

j=1

�

1−
1

p2j+1

�

=
1

p3
+

1

p5
+

1

p7
−

1

p8
· · · (3.4)

In particular f1(2) ≈ 0.16, f1(3) ≈ 0.04 and f1(5) ≈ 0.01.

We also consider some other examples that can be found in [6].
-The u-average of the function F = Fcyclic is equal to:

MGS ,u(F ) =
�

p

�

1−
1

p2
+

1

p2u+3

�
ζ(2)

�
j�1 ζ(2u+ 2j + 1)

.

In particular, MGS ,0(F ) ≈ 0.98.

-The u-average of F (G) = prp(G) is equal to:

1 + p1−2u. (3.5)

-The u-average of the function F = Fp-rank=2r is equal to:

MGS ,u(F ) =
p−r(2u+2r−1)

�
j�1(1− 1/p2r)

�

j�r+1

(1− 1/p2u+2j−1). (3.6)

The heuristics as well as their consequences are out of reach. Furthermore it is
difficult to check them numerically because there are too many elliptic curves
and Tate-Shafarevich groups seem to appear for large conductors. There is
no algorithm known to compute Tate-Shafarevich groups. The only thing we
can do is to compute the (conjectural) order of Tate-Shafarevich groups using
the Birch and Swinnerton-Dyer conjecture. Indeed all members in equation
(1.1) are easily computable except R(E) and |X(E)|. So if for some reason
one can compute R(E) (for rank 0 curves we simply have R(E) = 1), then
we can deduce |X(E)|. If we have many data we can compare them with the
heuristic predictions of type (3.3). We can also restrict the heuristics to some
natural sub-families of elliptic curves (quadratic twists) for which the analogy
with number fields seems to be even more deeper.
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4 Quadratic twist families

Let E be an elliptic curve defined over Q with conductor N and let L(E, s) =�
n a(n)n

−s be its L-function. From the work in [14], [12] and [1] E is known
to be modular. This implies that its L-function can be analytically continued
to the whole complex plane and satisfies a functional equation:

Λ(E, 2− s) = εΛ(E, s) (4.1)

where ε = ±1 is the sign of the functional equation and:

Λ(E, s) =

�√
N

2π

�s

Γ(s)L(E, s).

Note that the Birch and Swinnerton-Dyer conjecture implies ε = (−1)r where
r is the rank of E(Q). Let D be a fundamental discriminant (for simplicity we
assume (N,D) = 1). Then the twisted L-function:

L(E,D, s) =
�

n

�
D

n

�

a(n)n−s

where
�

D
.

�
is the Kronecker symbol, corresponds to the quadratic twist ED of

E by D and has conductor ND = ND2. Then the function L(E,D, s) satisfies
a functional equation as (4.1) whose sign is εD =

�
D
−N

�
.

In this section, we consider the family of elliptic curves:

(ED)D where D runs over all fundamental discriminant.

In fact, there is another analogy between this family and the family of quadratic
imaginary number fields. Indeed, from the work of Waldsurger ([13]), the
values L(E,D, 1) are related to the coefficients c(|d|) of a 3/2-weight modular
form; more precisely:

L(E,D, 1) = κE|D|
−1/2c(|D|)2 (4.2)

where κE is a constant depending only on E. Suppose that c(|d|) �= 0 so that
ED has rank 0. Then replacing L(E,D, 1) by its value predicted by the Birch
and Swinnerton-Dyer conjecture, we deduce that the order |X(ED)| of the
Tate-Shafarevich group of the rank 0 curve ED is, up to some factors (namely
the Tamagawa numbers), the square of the coefficients of a 3/2-weight modu-
lar form. We have exactly the same phenomenon for class groups (without the
square). Indeed, the order of class groups of imaginary quadratic fields are, up
to some normalization (namely, we have to consider the Hurwitz class numbers
instead of the class numbers), the coefficients of a 3/2-weight modular form.
Furthermore, using (4.2), Rubinstein ([10]) performed huge numerical experi-
mentations and computed how often a given prime p divides the (conjectural)
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order of X(ED) for rank 0 quadratic twists of many elliptic curves E. His
numerical results are in close agreement with the prediction (3.3) given by the
heuristic except maybe for some “special” primes. These lead us to restrict
the heuristics to the family (ED).

If T is a set of prime numbers and F a function defined on isomorpism classes
of groups of type S, then we define the function F ◦T by F ◦T : G �→ F (GT ),
where GT is the T -part of G.

Heuristic assumption for rank 0 quadratic twists. Let E be an el-
liptic curve defined over Q. Then there exists a finite set S of prime numbers
such that for all reasonable functions F we have:

lim
X→∞












�

|D|<X

rk(ED)=0

F ◦ T (X(ED))

�

|D|<X

rk(ED)=0

1












=MGS ,0(F ◦ T ) (4.3)

where the sum is over fundamental discriminants D such that the rank of ED

is 0 and where T is the set of prime numbers p with p �∈ S.

Heuristic assumption for rank 1 quadratic twists. Let E be an el-
liptic curve defined over Q. Then there exists a finite set S of prime numbers
such that for all reasonable functions F we have:

lim
X→∞












�

|D|<X

rk(ED)=1

F ◦ T (X(ED))

�

|D|<X

rk(ED)=1

1












=MGS ,1(F ◦ T ) (4.4)

where the sum is over fundamental discriminants D such that the rank of ED

is 1 and where T is the set of prime numbers p with p �∈ S.

Remark: It is actually not clear which prime numbers have to be excluded
form the discussion. Rubinstein’s huge numerical data show that some primes
behave in a rather special way. More precisely, those primes appear to be
maybe the prime 2 and the odd primes � dividing the order of the torsion
sub-group of the curves belonging to the isogeny class of the curve E with the
smallest conductor in the family in question (perhaps due to the fact that, in
this case, the �-part of the class group of Q(

√
d) should have a weight on the

�-Selmer group of Ed. This is, indeed, what had been proved by Frey for some
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curves E [7]). However, the convergence for the prime 2 may be simply slower
than for the others and so seems to be a special prime even if it is not.

In [8] and [9], Heath-Brown 1 studied the Selmer groups of the family of
quadratic twists:

ED : Dy2 = x3 − x.

When the rank of ED is 0 or 1, it is not difficult to obtain information about the
Tate-Shafarevich groups of ED from its Selmer group. Furthermore, Heath-
Brown considered all curves ED and not only those that have rank 0 or 1.
Nevertheless, there is a classical conjecture (the density conjecture) asserting
that on average the curves ED have either rank 0 or rank 1 (of course, this
can be true only on average). The random matrix theory predicts very precise
statements refining the density conjecture ([5]). Finally, the density conjecture
and Heath-Brown’s works imply the following rank 0 and rank 1 results:

Rank 0 case. Here we consider only D such that ED has rank 0.

- The average of the function 2rp(X(ED)) over the curves ED that have rank 0
is equal to 3.
- Let r ∈ N. The probability that r2(X(ED)) = 2r is equal to:

∞�

j=1

(1 + 2−n)−1 2r

�
1�j�r(2

j − 1)
(4.5)

Rank 1 case. Here we consider only D such that ED has rank 1.

- The average of the function 2rp(X(ED)) over the curves ED that have rank 1
is equal to 3/2.
- Let r ∈ N. The probability that r2(X(ED)) = 2r is equal to ([9]):

∞�

j=1

(1 + 2−n)−1 2r−1

�
1�j�r−1(2

j − 1)
. (4.6)

These results should be compared with (3.5) and (3.6) with p = 2, u = 0 and
u = 1. In fact, a little computation shows that they all agree! (Heath Brown’s
results and the link with the heuristics have been pointed out to me by E.
Kowalski whom I thank here). In Heath-Brown’s paper, it is suggested that
the convergence should be extremely slow, so it would not be very surprising if
the prime 2 behaved like a special prime in numerical computations although
it is not. Heath-Brown’s results and Rubinstein’s data make the heuristics on
Tate-Shafarevich groups even more believable in the case of quadratic twist
families.

1Editors’ comment: See also the article by D.R. Heath-Brown in this volume.
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