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Abstract

In this note, we give an example of an elliptic curve E such that
for all prime discriminants d < 0 for which the sign of the functional
equation of the L-function of the quadratic twist Ed of E by d is +1,
we have L(Ed, 1) �= 0. Furthermore, using the Birch and Swinnerton-
Dyer conjecture, we prove that the Tate-Shafarevitch group of Ed, for
all such d, has a trivial 2-part. Our method can be generalized to other
examples.

1 Notations and introduction

Let E be an elliptic curve defined over Q with conductor N and with L-function
L(E, s) =

�
n a(n)n−s. From the work of Wiles, Taylor ([Wil], [Tay-Wil]) and

Breuil, Conrad, Diamond, Taylor ([Bre et al.]), L(E, s) can be continued to
the whole complex plane and satisfies a functional equation:

Λ(E, s) = ε(E)Λ(E, 2− s),

where ε(E) = ±1 is the sign of the functional equation and Λ(E, s) is given
by:

Λ(E, s) =

��
N(E)

2π

�s

Γ(s)L(E, s).

Let d be a fundamental discriminant,
�

d
.

�
its associated quadratic character

and Ed the quadratic twist of E by d. Furthermore, we assume that d is
prime to N . Hence the conductor of Ed is Nd2, and the sign of the functional
equation of L(Ed, s) =

�
n a(n)

�
d
n

�
n−s is

ε(Ed) = ε(E)

�
d

−N(E)

�

.

Classical questions are concerned with the distribution of the special values
L(Ed, 1) as d runs through discriminants with ε(Ed) = 1. For example, one
can ask for the density of those d such that L(Ed, 1) = 0 or for the density
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of those d such that p | |X(Ed)|, where p is a fixed prime and X(Ed) is the
Tate-Shafarevitch group1 of Ed. The Birch and Swinnerton-Dyer conjecture
gives a precise link between the value L(Ed, 1) and the order |X(Ed)| of the
Tate-Shafarevitch group.

Using elementary arithmetic on quadratic forms, we prove that if E is the
elliptic curve “17a1” in Cremona’s table ([Cre]) then for all prime discrimi-
nants d < 0 with ε(Ed) = 1, we have L(Ed, 1) �= 0 and (using the Birch and
Swinnerton-Dyer conjecture) 2 � |X(Ed)|. Other examples can be handled
with the same method.

2 The example

Throughout this section E denotes the elliptic curve with conductor N = 17
defined by:

E : y2 + xy + y = x3 − x2 − x− 14.

We consider the quadratic twists Ed of E by discriminants d < 0 coprime with
N such that ε(Ed) = 1 (i.e. d ≡ 1, 2, 4, 8, 9, 13, 15, 16 mod 17). By a theorem
of Waldspurger ([Wal]), the values of L(Ed, 1) are related to the coefficients
c(n) of a weight 3/2 modular form. More precisely, we have:

L(Ed, 1) =
κ

�
|d|

c(|d|)2, (2.1)

where κ is a constant (here κ ≈ 2.74573911) and where the modular form of
weight 3/2, computed by Tornaria ([Tor]), is given by:

�

n

c(n)qn =
θ1(q)− θ2(q)

2

with:

θ1(q) =
�

(x,y,z)∈Z3

q3x2+23y2+23z2
−2xy−2xz−22yz

θ2(q) =
�

(x,y,z)∈Z3

q7x2+11y2+20z2
−6xy−4xz−8yz.

We have:

Theorem 1. If d < 0 is a prime discriminant with ε(Ed) = 1, the coefficient

c(−d) is odd.

1The Tate-Shafarevitch group of an elliptic curve E is some “cumbersome” group which,
roughly speaking, measures the obstruction of a certain “local-global” principle (see [Sil] for
a precise definition). It is conjectured that it is a finite group and, if so, one can prove that
its order is a perfect square.
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Proof Let d be such a discriminant and p = −d. Remark that we have p ≡ 3

mod 4 and that
�
−17

p

�
= 1. We let:

Q1(x, y, z) = 3x2 + 23y2 + 23z2 − 2xy − 2xz − 22yz

Q2(x, y, z) = 7x2 + 11y2 + 20z2 − 6xy − 4xz − 8yz.

We consider the following sets:

R1 = {(x, y, z) ∈ Z3, Q1(x, y, z) = p}

R2 = {(x, y, z) ∈ Z3, Q2(x, y, z) = p}

and we must prove that |R1| − |R2| ≡ 2 mod 4. In fact, the two ternary
quadratic forms Q1 and Q2 are invariant by the involutions ι : (x, y, z) �→
(−x,−y,−z) and τ : (x, y, z) �→ (x−z, y−z,−z). Hence, if P = (x, y, z) ∈ Ri

(for i = 1, 2), then P, ι(P ), τ(P ) and ι ◦ τ(P ) also belong to Ri and these 4
points are distinct except if z = 0. Thus,

|Ri| ≡ |{(x, y) ∈ Z2, Qi(x, y, 0) = p}| mod 4.

Hence for |R1| mod 4, we are led to study the number of solutions of

p = 3x2 − 2xy + 23y2 = q1(x, y)

and for |R2| mod 4 the number of solutions of

p = 7x2 − 6xy + 11y2 = q2(x, y).

There are 8 classes of primitive quadratic forms with discriminant ∆ = −24×17
modulo SL2(Z). As a set of representatives we can choose the 8 following ones:

q1(x, y) = 3x2 − 2xy + 23y2 q1(x, y) = 3x2 + 2xy + 23y2

q2(x, y) = 7x2 − 6xy + 11y2 q2(x, y) = 7x2 + 6xy + 11y2

q3(x, y) = 8x2 − 4xy + 9y2 q3(x, y) = 8x2 + 4xy + 9y2

q4(x, y) = 4x2 + 17y2 q5(x, y) = x2 + 68y2

Since we have
�
−17

p

�
= 1, the prime p must be represented by one of these

forms. Since p ≡ 3 mod 4, the prime p cannot be represented by the forms
q3, q3, q4 and q5. Hence, we have two possibilities:

• The prime p is represented by q1 with only 2 solutions (and so it is for
q1) and p is not represented by q2 (neither by q2).

• The prime p is not represented by q1 hence it is by q2 with only 2 solutions
(and so it is by q2).

In each case, we conclude that |R1| − |R2| ≡ 2 mod 4 and so c(p) is odd. �
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Corollary 2. Let d < 0 be a prime discriminant such that ε(Ed) = 1, then we

have L(Ed, 1) �= 0.

Proof Indeed, c(|d|) is odd so by equation (2.1) we have L(Ed, 1) �= 0. �

Remarks.

1- By the results of [Kol] and [BFH] or [Mu-Mu] we deduce that the rank of
Ed(Q) is 0 and that its Tate-Shafarevich group is finite.
2- It is a classical question to understand the ratio of d such that L(Ed, 1) = 0.
Using random matrix theory and its link with L-functions, Conrey, Keating,
Rubinstein and Snaith ([CKRS], [CKRS2]) have conjectured that if E is an
elliptic curve over Q, there exists a constant cE � 0 such that:

�

p�T

−p discriminant

ε(E
−p)=1

L(E
−p,1)=0

1 ∼ cET 3/4 log(T )−5/8

So, corollary 2 implies that the constant cE can be 0.

Corollary 3 (under the Birch and Swinnerton-Dyer conjecture). For

all prime discriminants d < 0 such that ε(Ed) = 1 we have 2 � |X(Ed)|.

Proof For such a discriminant, we already know that L(Ed, 1) �= 0 and, in
our example, the Birch and Swinnerton-Dyer conjecture predicts that:

|X(Ed)| = c(|d|)2

Hence, |X(Ed)| is odd. �

Remarks.

1- This seems to be in contradiction with the heuristic in [De1] which would
have suggested a density of about 58% of |X(Ed)| divisible by 2. Note that for
odd primes p, the numerical data, performed by Rubinstein ([Rub]), about the
density of |X(Ed)| divisible by p are in close agreement with the predictions
given by the heuristic (except for the p dividing |E(Q)tors|). In fact, as we have
seen, the effect of taking only prime discriminants d has a large consequence
on the 2-divisibility of S(Ed). This effect seems to disappear if we consider
all discriminants d < 0 such that ε(Ed) = 1. For example, the density of the
fundamental discriminants −108 < d < 0 such that 2 | S(Ed) is about 61.3%.
We expect that the correct density is the one predicted by the heuristic but
that the convergence is slow.
2- Using a 2-descent argument, it can be directly proved that the 2-parts of
the Tate-Shafarevich groups X(Ed) are all trivial and that the rank of Ed are
all 0 whenever d < 0 runs through fundamental prime discriminants such that
ε(Ed) = 1 ([Ant-Bun-Fre, exemple 1]). Hence, our results may also be seen
as a check of the 2-part of the Birch and Swinnerton-Dyer conjecture for our
family of quadratic twists.
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3- Using also a 2-descent argument, one can obtain similar results for the case
of “odd” quadratic twists of E by prime discriminants d < 0 ([De-Ro]): more
precisely, if d < 0 is a prime discriminant such that ε(Ed) = −1 then we
have L�(Ed, 1) �= 0 and 2 � |X(Ed)| (using a weak version of the Birch and
Swinnerton-Dyer conjecture).

3 Generalization

Of course, our method can easily be adapted for many other examples (for
instance E =“15a1”, “21a1”, “33a1”...). However, when the conductor N of
the elliptic curve E is not prime, then the discriminants d < 0 should satisfy
some more local conditions at the primes dividing N ; indeed, if we want, for
example, to apply the Kohnen-Zagier’s theorem ([Koh-Zag]) for finding the
weight 3/2 modular form, we must have, for all prime � | N ,

�
d
�

�
= ε�, where

ε� is the eigenvalue of the Atkin-Lehner operator at �. For instance, if we
take E = 15a1, we prove, using the same technics as above, that for all prime
discriminants d < 0 such that

�
d
3

�
= 1 and

�
d
5

�
= −1 then L(Ed, 1) �= 0 and

S(Ed) is not divisible by 2.
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