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Abstract. — We obtain averages of specific functions defined over (isomorphism
classes) of some type of finite abelian groups. These averages are concerned with

miscellaneous questions about the p`-ranks of these groups. We apply a classical

heuristic principle to deduce from the averages precise predictions for the behavior
of class groups of number fields and of Tate-Shafarevich groups of elliptic curves.

Furthermore, the computations of these averages, which comes with an algebraic

aspect, can also be reinterpreted with a combinatorial point of view. This allows us
to recover and to obtain some combinatorial identities and to propose for them a

natural algebraic context.

1. Introduction and notations

This article is concerned with the averages, in some sense, of functions defined over
finite abelian groups and groups of type S. A finite abelian group G is called a group
of type S if it is endowed with a non-degenerate, bilinear, alternating pairing:

β : G×G→ Q/Z.

A group of type S has the form G = H × H where H is a finite abelian group.
Reciprocally, each group G, of the form H×H has a unique structure of group of type
S up to isomorphisms of such groups (i.e. isomorphisms preserving the underlying
pairings). In particular, if G is a group of type S then |Auts(G)|, the number of
automorphisms of G that respect the (underlying) pairing β, does not depend on β
(see, for example, [Del01] for these facts). Due to the above, the pairings associated
to groups of type S will never be specified in the sequel.

For the rest of this paper, the letters H, H1, H2 are used for isomorphism classes
of finite abelian groups and the letter G for isomorphism classes of groups of type S.

Let h be a complex-valued function defined on isomorphism classes of finite abelian
groups and let u > 0. In [CL84], H. Cohen and H. Lenstra defined a certain u-average,
Mu(h), of the function h (in particular, if h is the characteristic function of a property
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P, Mu(h) is called the u-probability of P).
We write

ζ(h, s) =
∑
n>1

1

ns

∑
H(n)

h(H)

|Aut(H)|
,

where
∑
H(n) means that the sum is over all isomorphism classes of finite abelian

groups H of order n. It is proved in [CL84] that if h is non-negative, if ζ(h, s)
converges for <(s) > 0 and can be continued to a meromorphic function in <(s) > 0
with a unique pole of order at most 1 (the function ζ(h, s) could be holomorphic in
<(s) > 0) at s = 0 then

Mu(h) = lim
s→u

ζ(h, s)

ζ(1, s)
.

H. Cohen and H. Lenstra introduced such averages as a heuristic model in order to
give predictions for the behavior of the class groups of number fields varying in certain
natural families. In particular, they proved that

ζ(1, s) =
∑
n>1

1

ns

∑
H(n)

1

|Aut(H)|

=
∏
j>1

ζ(s+ j) =
∏

p prime

∏
j>1

(
1

1− 1
ps+j

)
,

where ζ(·) is the classical Riemann function. The reason of writing the above equality
as an Euler product is that in general we compute u-averages of functions restricted
to the p-parts of abelian groups and we recover global averages by taking the product
of all the p-components.

The aim of [Del01] was to adapt the Cohen-Lenstra’s model in order to give
predictions for the behavior of Tate-Shafarevich groups of elliptic curves varying in
certain natural families. Recall that, if they are finite (as it is classically conjectured),
Tate-Shafarevich groups are groups of type S. One can define, for u > 0, the u-average
(in the sense of groups of type S), MS

u(g), for a function g defined on isomorphism
classes of groups of type S. We let

ζS(g, s) =
∑
n>1

1

ns

∑
GS(n)

g(G)

|AutS(G)|
=
∑
n>1

1

n2s

∑
GS(n2)

g(G)

|AutS(G)|
,

where
∑
GS(n) means that the sum is over all isomorphism classes of groups of type

S, G of order n (the sum being empty if n is not a square). We have from [Del01],
that if g is non-negative, if ζS(g, s− 1) converges for <(s) > 0 and can be continued
to a meromorphic function in <(s) > 0 with a unique pole of order at most 1 (the
function ζS(g, s− 1) could be holomorphic in <(s) > 0) at s = 0 then

MS

u(g) = lim
s→u

ζS(g, s− 1)

ζS(1, s− 1)
.(1)

(1)The reason of taking “s− 1” instead of s is explained in [Del01]. See also [Del07] for a precision

of the heuristics for Tate-Shafarevich groups of elliptic curves of rank > 0.
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It can be proved that

ζS(1, s) =
∑
n>1

1

ns

∑
GS(n)

1

|AutS(G)|

=
∏
j>1

ζ(2s+ 2j + 1) =
∏
p

∏
j>1

(
1

1− 1
p2s+2j+1

)
.

As for finite abelian groups, we will speak of the u-probability of P if g is the char-
acteristic function of a property P of groups of type S. It will always be clear in the
context whether we are concerned with average in the sense of finite abelian groups
or in the sense of groups of type S.

Computations of u-averages can be viewed as algebraic interpretations of combinato-
rial identities. In that context, there is a generic tool that can help for going from
u-averages of finite abelian groups to u-averages of groups of type S. Indeed, let p be
a prime and assume that H and G are in fact p-groups (i.e. the order of H and G are
a p-power). If |H| = pn and

(1) H ' (Z/pZ)
λ1 ⊕

(
Z/p2Z

)λ2 ⊕ · · · ⊕ (Z/psZ)
λs

where λ1 + 2λ2 + · · ·+ sλs = n is a partition of n, then, we denote µ1, µ2, . . . , µs by

µ1 = λ1 + λ2 + · · ·+ λs;

µ2 = λ2 + · · ·+ λs;

...

µs = λs.

Thus, we also have µ1 + µ2 + · · ·+ µs = n and the number of automorphisms of H is
given by (see for example [Hal38])

|Aut(H)| = pµ
2
1+µ

2
2+···+µ

2
s

∏
16j6s

(
1

p

)
λj

,

where (q)a is defined by

(q)a = (1− q)(1− q2) · · · (1− qa) with a ∈ N.

Now, if G ' H ×H is a group of type S, we have

|AutS(G)| = p2(µ
2
1+µ

2
2+···+µ

2
s)+n

∏
16j6s

(
1

p2

)
λj

.

Whenever a certain equality involving |Aut(H)| holds, we can usually consider it as
a formal identity in the variable q = 1/p. To obtain the analogue for p-groups of type
S (and involving |AutS(G)|), one can apply, at convenient step, the following rule:
first substitute p2 for p and then multiply by pn: we will use roughly this rule several
times in this paper even if not explicitly mentioned.
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The p`-rank, rp`(H), of a finite abelian group H is the number of cyclic com-

ponents of H of order divisible by p`. It is defined by

rp`(H) = dimZ/pZ(p`−1H/p`H).

With the decomposition (1), it is not difficult to see that

rp`(H) = µ`.

Furthermore, if G ' H ×H is a group of type S then

rp`(G) = 2rp`(H) = 2µ`.

The first goal of this paper is to obtain some u-averages for finite abelian groups and
for groups of type S. These u-averages are concerned with several questions related
to p`-ranks. The first part deals with the u-average of the number of p`-torsion ele-
ments. We apply the heuristic principle to give predictions for the average number of
p`-torsion elements in class groups of number fields and in Tate-Shafarevich groups of
elliptic curves of rank 0 and 1 in natural families. These computations were motivated
by questions of M. Bhargava (see the works of M. Bhargava and A. Shankar [BS10b],
[BS10a]). In the second part, we study related questions about the probability laws
of p`-ranks. This is done by generalizing and adapting a work of H. Cohen [Coh85].
Both in the first and second part, our calculations are, in fact, closed to some combi-
natorial questions and we investigate a little bit this observation. We recover, obtain
or use some combinatorial identities and our work gives, in a way, a natural algebraic
context for them.

2. Average number of p`-torsion elements

Let (λ) a partition of n. By this we mean that (λ) = (λ1, λ2, . . . ) and that we have
n = λ1 + 2λ2 + · · ·+ sλs where s = s(λ) is the largest integer with λs 6= 0. Then, we
define (µj)16j6s by µj =

∑s
k=j λk. Let H be the finite abelian p-group of order pn

associated to this partition (λ):

H = (Z/pZ)
λ1 ⊕

(
Z/p2Z

)λ2 ⊕ · · · ⊕ (Z/psZ)
λs .

Let T` be the function defined by T`(H) = |H[p`]| = |{x ∈ H : p`x = 0}|, so that
T`(H) is the number of p`-torsion elements of H. We can easily see, with the notations
above, that we have

T`(H) = pµ1+µ2+···+µ` = prp(H)+rp2 (H)+···+r
p`

(H).

2.1. The classical weight. — We begin this part with the following lemma:

Lemma 1. — Let ` be a positive integer with ` 6 n, we have∑
H(pn)

T`(H)− T`−1(H)

|Aut(H)|
=

1

pn−` (1/p)n−`
.
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Proof. — The proof of the lemma is an adaptation of the proof of the Theorem 6.4
of [CL84]. For H1 and H2 two finite abelian groups, we denote by Hominj(H1, H2)
the subset of injective homomorphisms in Hom(H1, H2). If ` 6 n, we have

H[p`] ' (Z/pZ)
λ1 ⊕ · · · ⊕

(
Z/p`Z

)λ` ⊕ (Z/p`Z)λ`+1 ⊕ · · · ⊕
(
Z/p`Z

)λs
'

(
(Z/pZ)

λ1 ⊕ · · · ⊕
(
Z/p`−1Z

)λ`−1
)
⊕
(
Z/p`Z

)µ`
.

On the one hand, if we denote by ord(x) the order of a group element x, we have

|Hominj(Z/p`Z, H[p`])| = |{x ∈
(
Z/p`Z

)µ`
, ord(x) = p`}| × pλ1+···+(`−1)λ`−1

= p`µ`
(

1− 1

pµ`

)
× pλ1+2λ2+···+(`−1)λ`−1

= pµ1+···+µ`
(

1− 1

pµ`

)
= T`(H)− T`−1(H).

The second equality comes from the fact that the number of elements of order p` in
(Z/p`Z)b is pb`(1− 1/pb). On the other hand,

|Hominj(Z/p`Z, H[p`])| = |Hominj(Z/p`Z, H)|
= |Aut(Z/p`Z)| · |{H1 subgroup of H, H1 ' Z/p`Z}|.

Finally, Proposition 4.1 of [CL84] gives

|Aut(Z/p`Z)|
∑
H(pn)

|{H1 subgroup of H, H1 ' Z/p`Z}|
|Aut(H)|

=
1

pn−` (1/p)n−`
.

We deduce from the lemma:

Theorem 2. — For finite abelian groups, we have∑
n>0

xn
∑
H(pn)

T`(H)

|Aut(H)|
= (1− x`+1)

∏
j>0

1

1− x
pj

(|x| < 1),

and for groups of type S∑
n>0

x2n
∑

GS(p2n)

T`(G)

|AutS(G)|
=

(
1− x2(`+1)

p`+1

)∏
j>0

1

1− x2

p2j+1

(|x| < 1).

Proof. — We prove the theorem by induction on `. For ` = 0, we have ([CL84])∑
n>0

xn
∑
H(pn)

1

|Aut(H)|
=
∑
n>0

xn
(1/p)n

(1/p)n
,

and the results come from the following formal identity due to Euler:∑
n>0

qnxn

(q)n
=
∏
j>1

1

1− xqj
.
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Writing T` = (T` − T`−1) + T`−1 and using an induction argument, we have∑
n>0

xn
∑
H(pn)

T`(H)

|Aut(H)|
= x`

∑
n>0

xn
(1/p)n

(1/p)n
− (1 + x+ · · ·+ x`−1)

∏
j>1

1

1− x
pj

=
∏
j>1

1

1− x
pj

(1 + x+ · · ·+ x`),

which is exactly the result required for finite abelian groups. For groups of type S,
we substitute p by p2 and then x by x2/p.

We deduce from the theorem that we have

ζ(T`, s) = ζ(1, s)

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

ps`

)
,<(s) > 0,

ζS(T`, s) = ζS(1, s)

(
1 +

1

p2s+1
+

1

p2(2s+1)
+ · · ·+ 1

p(2s+1)`

)
,<(s) > −1,

where T`(H) (resp. T`(G)) is the number of p`-torsion elements in (the p-part of) H
(resp. G). So,

Corollary 3. — For finite abelian groups, the u-average of the number of p`-torsion
elements is

Mu(T`) = 1 +
1

pu
+ · · ·+ 1

pu`
.

For groups of type S, the u-average of the number of p`-torsion elements is

MS

u(T`) = 1 +
1

p2u−1
+ · · ·+ 1

p(2u−1)`
.

We now apply the heuristic argument for Tate-Shafarevich groups of elliptic curves.
Let E be some “natural” family of rank 0 elliptic curves E and suppose that the
behavior of the p-part of X(E) is not biased for this family. The average number of
p`-torsion elements in X(E) should be

1 + p+ p2 + · · ·+ p`.

Recently, M. Bhargava and A. Shankar ([BS10b], [BS10a]) obtained results on the
Selmer groups of elliptic curves that give, in particular, very strong evidence towards
the previous prediction for the family of all rank 0 elliptic curves. Our prediction
also implies that the average number of elements in X(E) of order exactly n should
be n (since, by the heuristic principle, the p-parts should behave independently). In
their work, M. Bhargava and A. Shankar obtained the same prediction with a totally
different approach. One can also find in [PR10] some general theoretical results on
Selmer groups.

For a family of rank 1 elliptic curves, the average should be

(2) 1 +
1

p
+ · · ·+ 1

p`
.
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Of course we can deduce similar conjectures for the p-part of class groups of quadratic
fields for p 6= 2 (to our knowledge these predictions have not been done before). This
implies that for a prime p > 3 the average number of p`-torsion elements in the class
groups of imaginary quadratic fields should be `+1. In the case of real quadratic fields,
the average number of p`-torsion elements in the class groups should be 1+ 1

p+· · ·+ 1
p`

exactly as in equation (2) (just due to the fact that u = 2u− 1 if and only if u = 1).

As explained in the introduction, Theorem 2 can been seen as a formal identity
(letting q = 1/p) and then we deduce the following corollary:

Corollary 4. — We have∑
n>0

xn
∑

(λ)=n

qµ
2
1+µ

2
2+···+µ

2
s−(µ1+···+µ`)

(q)λ1
· · · (q)λs

=
∏
j>1

1

1− xqj
· (1 + x+ · · ·+ x`)

where
∑

(λ)=n means that the sum is over all partitions (λ) of n.

Using the substitution x→ xq and `+ 1→ `, one can re-write the identity above
as

(3)
∑
(λ)

xµ1+µ2+···+µsqµ
2
1+µ

2
2+···+µ

2
s+µ`+µ`+1+···+µs

(q)λ1 · · · (q)λs
=
∏
j>1

1

1− xqj
· (1− (xq)`)

where the sum is over all partitions λ (and where s = s(λ) depends on the partition).
This equality should be compared with an identity due to Andrews ([And74]).

Letting k > 2 and 1 6 ` 6 k be fixed integers, we define the series Qq,k,`(x) by

Qq,k,`(x) =
∑
n>0

(−1)nxknq
(2k+1)n(n+1)

2 −`n(1− x`q(2n+1)`)

(q)n
∏
j>n+1(1− xqj)

.

In particular, for x = 1, Jacobi’s identity gives

Qq,k,`(1) =
∏
n>1

n 6≡0,±` mod 2k+1

(1− qn)−1.

We can now state the results of Andrews ([And74, Theorem 1 and equation 2.5]):

Theorem 5 (Andrews). — With the notations above:

(4)
∑
(λ)

s(λ)6k−1

xµ1+µ2+···+µsqµ
2
1+µ

2
2+···+µ

2
s+µ`+···+µs

(q)λ1(q)λ1 · · · (q)λs
= Qq,k,`(x).

Equation (4) with x = 1 and the product formula are known as the full Andrews-
Gordon identities. They are very famous and deep combinatorial generalizations of
the Rogers-Ramanujan identities which are equation (4) for k = 2, ` = 1, 2, x = 1
and the product formula (see also [And98]). We remark that through equation (3)
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we have in fact proved, with a completely algebraic aspect, Andrews’s identity in the
very special (and easier) case k =∞ since

Qq,∞,`(x) =
∏
j>1

1

1− xqj
· (1− (xq)`).

Note that we could have directly obtained Theorem 2 using it. Nevertheless, we
focus on the fact that our approach gives a natural algebraic interpretation of these
identities.

2.2. The weight wk. — This part is just concerned with the combinatorial as-
pects of u-averages and not with consequences on the the heuristics. In their article,
Cohen and Lenstra defined in fact a more general (k, u)-average in which the weight
1/|Aut(H)| has to be replaced by

wk(H) =
|{surjective homomorphisms Zk → H}|

|H|k|AutH|
=

(
1
p

)
k(

1
p

)
k−rp(H)

1

|AutG|
,

with the convention that (1/p)a = 0 whenever a < 0. Of course, one immediately
sees that

lim
k→+∞

wk(H) =
1

|Aut(H)|
.

Duplicating the proof of Lemma 1, we obtain that for k, n two positive integers and
for ` ∈ N with 1 6 ` 6 n we have

∑
H(pn)

wk(H)(T`(H)− T`−1(H)) =

(
1− 1

pk

)(
1
p

)
n−`+k−1

pn−`(
1
p

)
k−1

(
1
p

)
n−`

.

Furthermore, for ` = 1:

∑
n>0

xn
∑
H(pn)

T1(H)wk(H) =
(
1 + (1− p−k)x

) k∏
j=1

1

1− x
pj
.

Hence, an induction argument gives:

Proposition 6. — For k, ` > 1, we have

∑
n>0

xn
∑
H(pn)

T`(H)wk(H) =

k∏
j=1

1

1− x
pj

1− x`+1 − x
pk

+ x`+1

pk

1− x

 .

From this formula we could easily recover the Dirichlet series that would be asso-
ciated to T` and wk(H). Letting q = 1/p, x ← xq and substituting ` for ` + 1, we
obtain:
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Corollary 7. — We have the following formal identity

(5)
∑
(λ)
µ16k

(q)kx
µ1+µ2+···+µs

(q)k−µ1

∏
16j6s(q)λj

qµ
2
1+µ

2
2+···+µ

2
s+µ`+µ`+1+···+µs =

k∏
j=0

1

1− xqj+1

(
1− q`x` − xqk+1 + x`qk+`

)
.

We recall that, in the formula above, s = s(λ) depends on λ.

Of course, letting k → ∞, we recover equation (3). Now, if we let ` → ∞ in
equation (5) we obtain exactly one of Hall’s formula ([Hal38]). Hence, equation (5)
(which seems to be previously unknown) can be seen as one of its generalization. One
could probably obtain equation (5) with some classical combinatorial tools, however,
as before, our equation occurs naturally in an algebraic way. In an other direc-
tion, Stembridge ([Ste90]) gave some refinements of Hall’s formula (mainly with s(λ)
bounded by a fixed m but still with ` =∞), which allowed him to recover Andrews’
identity in the case ` = 1 for all k (note that the cases ` = 1 and ` = ∞ are closely
related), and therefore the Rogers-Ramanujan identities. Stembridge’s method uses
also some algebraic aspects but with a different approach. It should be interesting to
obtain a Hall like formula with general ` through Stembridge’s approach (i.e. with `
and s(λ) bounded).

3. Probabilities on p`-ranks

The first aim of this section is to compute the probability laws of p`-ranks of finite
abelian groups and groups of type S. More precisely, let k > 1, ` > 0 be two integers.
Having fixed `+ 1 non-negative integers rk > rk+1 > · · · > rk+` we are interested in
the u-probability (and related questions) that a p-group H (resp. a p-group of type
S, G) satisfies

rp`+j (H) = rk+j (resp. rp`+j (G) = 2rk+j) for all 0 6 j 6 `.

We remark that the case ` = 0 gives the probability laws for the pk-rank and the
case k = 1 gives the probability that a group has its pj-ranks fixed for all 1 6 j 6 `.
As this is a generalization and an adaptation of Theorem 2.4 of [Coh85] (which is
for finite abelian groups and ` = 0), we will just give the main steps of the proof.
We also remark that the formula we are going to give for groups of type S cannot be
obtained directly from [Coh85] and the rule given in the introduction. That is one
of the reasons that we keep an indeterminate x all along the computations and need
to use the full general Andrew’s identity.

For convenience, we use the following notation: if H is a finite abelian group
of order pn, we write n = e(H).
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Suppose H is a p-group with rpk+j (H) = rk+j for 0 6 j 6 `. Then, we can write
H ' H1 ×H2, with

H1 '
⊕

16i6k+`−1

(Z/piZ)λi

where the λi are subject to certain conditions and

H2 '
⊕
`6i6s

(Z/piZ)λi

for some s and λ` + λ`+1 + · · ·+ λs = rk+`.

For H1, we first remark that the conditions on the pk+j-ranks mean that λ1, λ2, . . . ,
λk−1 are not restricted but that λk, . . . , λk+` have to be be fixed by the following `
equations:

λk = rk − rk+1;

λk+1 = rk+1 − rk+2;

...

λk+`−1 = rk+`−1 − rk+`.

We let (λ̃) be the restricted partition (λ̃) = (λ1, · · · , λk−1) and

µ̃1 = λ1 + · · ·+ λk−1;

...

µ̃k−1 = λk−1.

Some technical calculations lead to the following equalities

e(H1) =

k−1∑
j=1

µ̃j +

k+`−1∑
j=k

rj + (k − 1)rk − (k + `− 1)rk+`

and

k+`−1∑
j=1

µ̃2
j =

k−1∑
j=1

µ̃2
j + 2(rk − rk+`)

k−1∑
j=1

µ̃j+

(k − 1)(rk − rk+`)2 +

k+`−1∑
j=k

r2j − 2rk+`

k+`−1∑
j=k

rj + `r2k+`.

Furthermore, one can see that

|Aut(H)| = |Aut(H1)||Aut(H2)|p2re(H1).

We now fix an integer 1 6 a 6 k and we remark that

|H/pa−1H| = prk(a−1)pµ̃1+µ̃2+···+µ̃k−1−(µ̃a+µ̃a+1+···+µ̃k−1).

Finally, we can state, with the convention that Qq,1,`(x) = 1:
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Theorem 8. — Let k > 1, rk > rk+1 > · · · > rk+` be ` + 1 non-negative integers
and 1 6 a 6 k.
For finite abelian groups, we have

∑
n>0

xn
∑
H(pn)

r
pk

(H)=rk

···
r
pk+`

(H)=rk+`

|H/pa−1H|
|AutH|

=

prk(a−1)

xkrk+rk+1+···+rk+`
rk+`∏
j=1

(
1− x

pj

)−1
Q 1
p ,k,a

(
x

p2rk−1

)

pkr
2
k+r

2
k+1+···+r

2
k+`

(
1

p

)
rk+`

k+`−1∏
j=k

(
1

p

)
rj−rj+1

.

For groups of type S, we have

∑
n>0

x2n
∑

GS(n2)
r
pk

(G)=2rk

···
r
pk+`

(G)=2rk+`

|G/pa−1G|
|AutS G|

=

p2rk(a−1)

x2(krk+rk+1+···+rk+`)
rk+`∏
j=1

(
1− x2

p2j+1

)−1
Q 1
p2
,k,a

(
x2

p4rk−1

)

p2(kr
2
k+r

2
k+1+···+r

2
k+`)

(
1

p2

)
rk+`

k+`−1∏
j=k

(
1

p2

)
rj−rj+1

.

Proof. — We let

(∗) :=
∑
H

as above

|H/pa−1H|xe(H)

|AutH|
.

We have

(∗) = prk(a−1)
∑

H1, H2
as above

(
xe(H1)xe(H2)p−2re(H1)

|Aut(H1)||Aut(H2)|
pµ̃1+···+µ̃k−1−(µ̃a+···+µ̃k−1)

)
.

So,

(∗) =
prk(a−1)(
1
p

)
rk+`

∑
H1

p−2re(H1)xe(H1)pµ̃1+···+µ̃k−1−(µ̃a+···+µ̃k−1)

|Aut(H1)|
∑

J⊂(p`Z)r
H2'Zr/J

xe(H2)

|H2|r

=
prk(a−1)

(1/p)rk+`
ST.
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We have used the fact (see [Coh85]) that for a given H2, the number of J ⊂ (p`Z)r

such that H2 ' Zr/J is equal to |H2|r(1/p)r/|Aut(H2)|, and we denoted

S =
∑
H1

as above

p−2re(H1)xe(H1)

|Aut(H1)|
pµ̃1+···+µ̃k−1−(µ̃a+···+µ̃k−1);

T =
∑

J⊂(p`Z)r
H2'Zr/J

xe(H2)

|H2|r
.

Still following [Coh85], we have for T :

T =
∑
α>0

p−(`r+α)rx`r+α
∑

J⊂(p`Z)r

|(p`Z)r/J|=pα

1

= p−`r
2

x`r
∑
α>0

xα
(

1

p

)α
(1/p)α+r−1

(1/p)r−1(1/p)α

= (1/p)
`r2

x`r
r∏
j=1

1

1− x
pj
.

Finally, we obtain

(∗) =
prk(a−1)

(1/p)rk+`

x(k−1)rk+rk+rk+1+···+rk+`
∏rk+`
j=1 (1− xp−j)−1∏k+`−1

j=k (1/p)rj−rj+1p
(k−1)r2k+r

2
k+r

2
k+1+···+r

2
k+`

×
∑

λ1,··· ,λk−1

(
p−2rk(µ̃1+···+µ̃k−1)xµ̃1+···+µ̃k−1

pµ̃
2
1+···+µ̃2

k−1
∏k−1
j=1 (1/p)λj

pµ̃1+···+µ̃k−1−(µ̃a+···+µ̃k−1)

)
,

and a little calculation gives Theorem 8.

We are now able to give two direct applications of Theorem 8 related to the computa-
tions of averages and to conjectures on class groups and on Tate-Shafarevich groups
(via the heuristic principle).

3.1. The case ` = 0. — This is the original goal of [Coh85] for finite abelian
groups. On the one hand, we recover Theorem 2.4 of [Coh85] (with a slightly different
notation):

∑
n>1

1

ns

∑
H(n)
r
pk

=r

|H/pa−1H|
|AutH|

=

∏
j>r+1

(
1− 1

pj+s

)
(

1
p

)
r
pkr(s+r)−r(a−1)

Q 1
p ,k,a

(
1

p2r+s−1

)
ζ(1, s).
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If we let a = 1, then we obtain that the u-probability that a finite abelian group has
pk-rank equal to r is

(6)

∏
j>r+1

(
1− 1

pj+u

)
(

1
p

)
r
pkr(u+r)

Q 1
p ,k,1

(
1

p2r+u−1

)
.

Note that Q 1
p ,k,1

(p) = Q 1
p ,k,k

(1), which allows us to recover the 0 and 1-probabilities

as a product formula as in [Coh85, Corollary 3.1] (and in fact, with our parameter
x, the formula with a > 1 is useless for the 0 and 1-probability we have in mind).

On the other hand, we have for groups of type S (for simplicity we only give the
Dirichlet function for a = 1)

∑
n>1

1

n2s

∑
GS(n2)
r
pk

=2r

1

|AutS G|
=

∏
j>r+1

(
1− 1

p2s+2j+1

)
(

1
p2

)
r
pkr(2s+2r+1)

Q 1
p2
,k,1

(
1

p4r+2s−1

)
ζS(1, s).

From the formula, we deduce:

Proposition 9. — For groups of type S, the u-probability that a group of type S has
pk-rank equal to 2r is∏

j>r+1

(
1− 1

p2u+2j−1

)
(

1
p2

)
r
pkr(2u+2r−1)

Q 1
p2
,k,1

(
1

p4r+2u−3

)
.

Once again, we apply the heuristic argument for Tate-Shafaverich groups of elliptic
curves. Let E be a “natural” family of rank 0 elliptic curves E such that the behavior
of the p-part of X(E) is not biased. The probability that the pk-rank of X(E) is
equal to 2r should be

P0(k, r) =

∏
j>r+1

(
1− 1

p2j−1

)
(

1
p2

)
r
pkr(2r−1)

Q 1
p2
,k,1

(
1

p4r−3

)
.

For a family of rank 1 elliptic curves, the probability should be

P1(k, r) =

∏
j>r+1

(
1− 1

p2j+1

)
(

1
p2

)
r
pkr(2r+1)

Q 1
p2
,k,1

(
1

p4r−1

)
.

The form of the two formulas above (in particular the fact that the powers of p in the
index and in the argument of Q have different parities) suggests that it is probably
hopeless to find a product formula for the u-probabilities related to Tate-Shafarevich
groups (unlike the case of class groups of quadratic fields). Here are few numerical
approximations of values of P0(k, r) and P1(k, r).
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Pi(k, r) p = 2 p = 3 p = 5
P0(2, 0) 0.70837 0.87962 0.95866
P0(2, 1) 0.29128 0.12036 0.04133
P0(2, 2) 0.00033 10−6 10−9

P0(3, 0) 0.85416 0.95987 0.99173
P0(3, 1) 0.14582 0.04012 0.00826
P1(2, 0) 0.97981 0.99846 0.99993
P1(2, 1) 0.02018 0.00153 10−5

P1(3, 0) 0.99747 0.99994 0.99999

3.2. The case k = 1. — We must have a = 1. Let us fix ` integers r1 > r2 > · · · >
r`−1 > r` > 0. Then Theorem 8 gives

(7)
∑
H

rp(H)=r1
···

r
p`

(H)=r`

xe(H)

|AutH|
=

xr1+···+r`

pr
2
1+···+r2`

(
1
p

)
r`

`−1∏
j=1

(
1

p

)
rj−rj+1

r∏
j=1

1

1− x
pj
.

It is clear that the factor xr1+···+r`p−r
2
1−···−r

2
` /
∏`−1
j=1(1/p)rj−rj+1

appears in each term
of the sum in the left hand side. Naturally, this factor also appears in the right hand
side.

Corollary 10. — We have for finite abelian groups

∑
n>1

1

ns

∑
H(n)

rp(H)=r1
···

r
p`

(H)=r`

1

|AutH|
=

ζ(1, s)
∏

j>r`+1

(
1− 1

ps+j

)

pr
2
1+···+r2`+s(r1+···+r`)

(
1
p

)
r`

`−1∏
j=1

(
1

p

)
rj−rj+1

,

and for groups of type S∑
n>1

1

n2s

∑
GS(n2)

rp(G)=2r1
···

r
p`

(G)=2r`

1

|AutS G|
=

ζS(1, s)
∏

j>r`+1

(
1− 1

p2s+2j+1

)

p2(r
2
1+···+r2` )+(2s+1)(r1+···+r`)

(
1
p2

)
r`

`−1∏
j=1

(
1

p2

)
rj−rj+1

.

We deduce from the previous the u-probability laws:



AVERAGES OF GROUPS INVOLVING p`-RANK AND COMBINATORIAL IDENTITIES 15

Corollary 11. — Let ` > 1 and r1 > r2 > · · · > r`−1 > r` > 0. For finite abelian
groups, the u-probability that a finite abelian group has pj-rank equal to rj for all
1 6 j 6 ` is ∏

j>r`+1

(
1− 1

pu+j

)

pr
2
1+···+r2`+u(r1+···+r`)

(
1
p

)
r`

`−1∏
j=1

(
1

p

)
rj−rj+1

.

For groups of type S, the u-probability that a group of type S has pj-rank equal to 2rj
for all 1 6 j 6 ` is ∏

j>r`+1

(
1− 1

p2u+2j−1

)

p2(r
2
1+···+r2` )+(2u−1)(r1+···+r`)

(
1
p2

)
r`

`−1∏
j=1

(
1

p2

)
rj−rj+1

.

Once again, we could deduce, from the heuristic principle, conjectures concerning
class groups and Tate-Shafarevich groups.

3.3. Examples and identities. — We obtain from the first and second parts
some combinatorial identities (and we only focus on this aspect). The following
formula seems to be previously unknown:

Corollary 12. — We have

∑
06r`6···6r1

qr
2
1+···+r

2
`+(u−1)(r1+···+r`)

∏
j>r`+1

(
1− qu+j

)
(q)r`

`−1∏
j=1

(q)rj−rj+1

= 1 + qu + · · ·+ qu`.

Proof. — We apply∑
06r`6···6r1

u-prob(rp(H) = r1, rp2(H) = r2, · · · rp`(H) = r`)T`(H) = Mu(T`).

Then, we use Corollary 3 and Corollary 11 and substitue 1/p→ q.

In particular, if u is an integer, the formula in Corollary 12 becomes

(8)
∑

06r`6···6r1

qr
2
1+···+r

2
`+(u−1)(r1+···+r`)

(q)r`+u (q)r`

`−1∏
j=1

(q)rj−rj+1

=
1 + qu + · · ·+ qu`

(q)∞
.

The formula (8) and the formula in Corollary 12 are nearly of the same type as the
ones in [Hal38] and in [Ste90]. They do not seem however to be direct consequences
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of it. There are neither special cases of the generalizations of Stembridge’s formulas
given in [IJZ06] and in [JZ05].

Finally, we conclude with a last remark. Let k > 1 and rk > rk+1 > · · · > rk+` be
`+ 1 non-negative integers. Theorem 8 can be re-written as

(9)
∑
(λ)

µk=rk
µk+1=rk+1
···

µk+`=rk+`

xµ1+µ2+···+µsqµ
2
1+µ

2
2+···+µ

2
s

(q)λ1
(q)λ2

· · · (q)λs
q−µ1−µ2−···−µs+µa+µa+1+···+µs =

q(1−a)rk
xkrk+rk+1+···+rk+`qkr

2
k+r

2
k+1+···+r

2
k+`Qq,`,1(xq2rk−1)∏rk+`

j=1 (1− xqj)(q)rk+`
∏k+`−1
j=k (q)rj−rj+1

.

We fix rk+` = r and write∑
(λ)

µk+`=r

X =
∑

rk,rk+1,···rk+`−1
rk>rk+1···>rk+`−1>r

∑
(λ)

µk=rk···
µk+`−1=rk+`−1

µk+`=r

X,

and we apply equation (9) with convenient parameters to the left hand side and to
the inner sum of right hand side (in fact, we also take r = 0 since the general case
r > 0 is a direct consequence of it). Then, we use the substitution x → x/q, we
reindex rk, rk+1, · · · , rk+`−1 by r1, r2, · · · , r` and we obtain directly the following
general recursion formula on the Qq,k,a:

Proposition 13. — We have for `, k > 1, r > 0 and 1 6 a 6 k

(10) Qq,k+`,a(x) =∑
r1>···>r`>0

(
xkr1+r2+···+r`qkr

2
1+r

2
2+···+r

2
`+kr1+r2+···+r` q

(1−a)r1Qq,k,a(xq2r1)

(q)r`
∏`−1
j=1(q)rj−rj+1

)
.

When ` = 1, formula (10) is exactly one of the inputs needed by Andrews for proving
equation (4). Formula (10) is probably also a consequence of consecutive applica-
tions of the special case ` = 1. The questions of using or obtaining other classical
combinatorial identities with this algebraic aspect will be discussed elsewhere.
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