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Abstract

We briefly describe how to get the power of logarithm in the asymp-
totic for the number of vanishings in the family of even quadratic twists
of a given elliptic curve. There are four different possibilities, largely
dependent on the rational 2-torsion structure of the curve we twist.

1 Introduction

Let E be a rational elliptic curve of conductor N and ∆ its discriminant, with
Ed its dth quadratic twist. The seminal paper [CKRS] modelled the value-
distribution of L(Ed, 1) via random matrix theory and applied a discretisation
process to the coefficients of an associated modular form of weight 3/2. This
led to the conjecture that asymptotically there are cEX3/4(log X)3/8−1 twists
by prime p < X with even functional equation and L(Ep, 1) = 0, where the 3/8
comes from random matrix theory, and the −1 comes from the prime number
theorem.

We wish to determine a similar heuristic for the asymptotic for the number
of twists by all fundamental discriminants |d| < X such that L(Ed, s) has even
functional equation and L(Ed, 1) = 0. We find that the power of logarithm that
we obtain depends on the growth rate of various local Tamagawa numbers of
twists of E. Because of this, it is somewhat unfortunate that isogenous curves
need not have the same local Tamagawa numbers. This is most particularly a
problem when we have a curve with full rational 2-torsion and it is isogenous
to one that only has one rational 2-torsion point; in this case, we should work
with the curve with full 2-torsion. This makes the statement of our result a
bit messy, but we have:

Heuristic 1.1. Let E be a rational elliptic curve. Then the number of even
quadratic twists Ed with L(Ed, 1) = 0 and |d| < X is asymptotically
c�EX3/4(log X)bE+3/8 where c�E > 0 and

• bE = 1 when E (or a curve isogenous to it) has full rational 2-torsion,

• bE =
√

2/2 when E has one rational 2-torsion point (and no curve isoge-
nous to E has full 2-torsion),

• bE = 1/3 when E has no rational 2-torsion and ∆ is square.
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• bE =
√

2/2− 1/3 when E has no rational 2-torsion and ∆ is not square.

The 3/8 in the exponent comes from random matrix theory, and so we
only need concern ourselves with calculting bE. Also, we do not consider the
constant c�E, as that would greatly complicate the discussion.

2 Discussion

The discretisation for the values of L(Ed, 1) can be re-interpreted as saying
that

L(Ed, 1) < Ω(Ed)g(Ed)/T (Ed)
2 =⇒ L(Ed, 1) = 0

where Ω is the real period, g is the product of the Tamagawa factors, T is the
order of the torsion subgroup. This comes from the Birch and Swinnerton-
Dyer conjecture and the fact that the order of the Shafarevich-Tate group is
an integer. From random matrix theory, we expect that there is some constant
c > 0 such that the probability that L(Ed, 1) ≤ t tends to ct1/2(log |d|)3/8 as
t → 0. Combining this distribution with the discretisation, we get that (as
|d| → ∞)

Prob
�
L(Ed, 1) = 0

�
∼ c

�
Ω(Ed)g(Ed)/T (Ed)2(log |d|)3/8.

This becomes useful upon realising how these quantities vary in twist
families. In particular, we have (up to a factor of 2 that we ignore) that
Ω(Ed) = Ω(E)/

�
|d| while T (Ed) is constant for |d| sufficiently large. This

reduces our problem to a determination of how the Tamagawa product g(Ed)
varies; from the above we have that

Prob
�
L(Ed, 1) = 0

�
≈ c�

�
g(Ed)(log |d|)

3/8/|d|1/4,

and so the number of twists should be (here the d are fundamental)

N(X) ∼
�

|d|<X

Ed even

Prob
�
L(Ed, 1) = 0

�
≈

�

|d|<X

Ed even

c�
�

g(Ed)(log |d|)
3/8/|d|1/4.

and by partial summation we have that

N(X) ≈ c��X3/4(log X)3/8
�

|d|<X

Ed even

�
g(Ed),

We now compute the expected average value of
�

g(Ed) via an analysis of the
splitting behaviour of the cubic polynomial associated to E.
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3 Tamagawa numbers

For simplicity, we now restrict to twisting by positive fundamental discrimi-
nants d with gcd(d,N) = 1 and even sign in the functional equation.1 We
first isolate the contribution to the Tamagawa factor g(Ed) coming from the
primes that divide the discriminant of E, and call this g(E). Writing gp(Ed)
for the local Tamagawa number at p for the twist Ed, we have, up to a bounded
factor Bd which includes G(E) and other contributions from bad primes, that

g(Ed) = Bd ·
�

p|d

gp(Ed).

We shall ignore Bd for the remainder of the discussion, as consideration of it
does not change the power of logarithm. Again possibly ignoring a finite set
of bad primes, when we twist by d, for primes p|d the local Tamagawa number
gp(Ed) at p for Ed is either 1, 2, or 4.2 If we write E in the form y2 = f(x),
these correspond to the cubic f having 0, 1, or 3 roots modulo p (provided
that this model for E is good at p).

We assume that we can use the Chebotarev density theorem to determine
the frequency of each splitting behaviour of the cubic f . When E has full
2-torsion, the cubic f splits completely over the rationals, so we have gp(Ed) =
4 for all p|d. When E has one rational 2-torsion point, the cubic f splits
over Q as a quadratic factor times a linear factor, and the quadratic splits
into two linear factors precisely when its discriminant is square mod p; thus
asymptotically half the primes p|d have gp(Ed) = 2, and the other half yield
gp(Ed) = 4. Finally, when f is irreducible over the rationals, we have two cases,
depending upon whether3 ∆ is square: when it is square (such as with x3 −
3x + 1), asymptotically 1/3 of the primes have gp(Ed) = 4 and the other 2/3
have gp(Ed) = 1; when the discriminant is not square, the local Tamagawa
factors are gp(Ed) = 1, 2, 4 in proportions 1/3, 1/2, and 1/6.4

1A rigourous accounting would also separate the d into congruence classes modulo the
discriminant (see [D]) but we omit this so as to focus on the main ideas. Indeed, the more
pedantic analysis would only modify the constant c�E and not the power of logarithm in the
asymptotic.

2We can note that for p > 2 we have gp(Ed) = gp(Ep�) where p� = p(−1)(p−1)/2, which
essentially eliminates the dependence on d.

3The fact that the elliptic curve discriminant ∆ and the discriminant of the cubic differ
by a factor of 16 does not affect our analysis.

4Our use of the Chebotarev density theorem is not quite legitimate in general. We
need to be more careful about our restriction to even twists (a condition that is given by
congruences modulo N), which can give incompatibility conditions, especially in the case
where f is irreducible and has non-square discriminant, as here the splitting condition cannot
be given by congruence conditions modulo N .
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4 Analytic number theory

The problem of computing the average value of
�

g(Ed) is now essentially
one of analytic number theory; for simplicity,5 we explain how to compute
the average value at positive fundamental discriminants d of the multiplicative
function h(d) =

�
g(Ed), and so wish to compute an asymptotic for

F (X) =
�

d≤X

µ�(d)2h(d),

where the modified Möbius function (µ�)2 is the characteristic function of (pos-
itive) fundamental discriminants (this differs from µ2 only at the prime 2).
We analyse F (X) via the behaviour of the logarithm of the Euler prod-
uct

�
p

�
1 + h(p)/ps

�
as s → 1+. Explicitly, as s → 1+ we have that (ignoring

the modification at the prime 2)

log
�

p

�

1 +
h(p)

ps

�

∼
�

p

h(p)

ps
∼ −(t1 + t2

√
2 + t4

√
4) log(s− 1),

where tk is the probability that h takes on the value
√

k, and the last step
is in analogy with the fact that

�
p 1/ps ∼ − log(s − 1). Via exponentiation

we obtain
�

p

�
1 + h(p)/ps

�
∼ c/(s − 1)A for some constant c �= 0, where

A = (t1 + t2
√

2 + t4
√

4) > 0. An application of the Tauberian theorem (or
Perron’s formula) then gives us that F (X) ∼ c�X(log X)A−1 for some c� �= 0.

Finally, we conclude by computing the value of A in each of the four cases:

• (t1, t2, t4) = (0, 0, 1) and so A = 2 for the case of full 2-torsion;

• (t1, t2, t4) = (0, 1/2, 1/2) and so A = 1+
√

2/2 for the case of one rational
2-torsion point;

• (t1, t2, t4) = (2/3, 0, 1/3) and so A = 4/3 when there is no 2-torsion and
∆ is square;

• (t1, t2, t4) = (1/3, 1/2, 1/6) and so A = 2/3 +
√

2/2 when there is no
2-torsion and ∆ is non-square.
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