
ZERO-FREE REGIONS FOR DIRICHLET SERIES (II)

C. DELAUNAY, E. FRICAIN, E. MOSAKI, AND O. ROBERT

Abstract. In this paper, we continue some work devoted to ex-
plicit zero-free discs for a large class of Dirichlet series. In a previ-
ous article, such zero-free regions were described using some spaces
of functions which were defined with some technical conditions.
Here we give two different natural ways in order to remove those
technical conditions. In particular this allows to right down ex-
plicit zero-free regions differently and to obtain for them an easier
description useful for direct applications.

1. Introduction

As usual, we denote by {t} the fractional part of the real number t.
We let B] be the closed subspace of L2(0,+∞) spanned by functions
of the form

(1.1) f : t 7−→
n∑
k=1

ck

{αk
t

}
,

where ck ∈ C and 0 < αk ≤ 1 are restricted to the condition

(1.2)
n∑
k=1

ckαk = 0.

B. Nyman [Nym50] proved that the Riemann zeta function does not
vanish on the half-plane <(s) > 1/2 if and only if χ(0,1) ∈ B], where
χ(0,1) is the characteristic function of the interval (0, 1). Then A. Beurl-
ing (see [Beu55]) gave a similar criterion in Lp spaces setting, for
1 < p < 2, reformulating the non vanishing of the Riemann zeta func-
tion on <(s) > 1/p. Their reformulations are known as the Beurling-
Nyman criterion for the Riemann hypothesis. The Nyman’s criterion
was extended by A. de Roton in [dR07] for a large class of Dirichlet
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series containing the Selberg class. In [Nik95], N. Nikolski obtained
an explicit version for the Beurling-Nyman’s criterion in the case of
the Riemann zeta function. Similarly, in [DFMR11] an extended ex-
plicit version had been given for a large class of Dirichlet series (which
includes largely the Selberg class). In all these previous works, some
spaces of functions, generalizing B], have to be considered and their def-
initions involve several technical conditions of the same type as (1.2).
These conditions appear naturally in order to control the pole, coming
from L(s) at s = 1, of some auxiliary functions.
The fact is that these conditions are useless if we are interested in an
equivalent criterion for the (generalized) Riemann hypothesis. Indeed,
for the Riemann zeta function, it is proved in [BDBLS00] that we may
omit the condition (1.2): let B be the closed subspace of L2(0,+∞)
spanned by functions of the form

f(t) =
n∑
k=1

ck

{αk
t

}
, (t > 0).

Then the zeta function does not vanish on the half-plane <(s) > 1/2
if and only if χ(0,1) ∈ B. This result was generalized in [dR09] for a
large class of Dirichlet series including in particular the Selberg class.
Furthermore, for 0 < λ ≤ 1, if Bλ denotes the subspace of B formed by
functions f such that min1≤k≤n αk ≥ λ, then the authors in [BDBLS00]
also proved that there exists a constant C > 0 such that

(1.3) lim inf
λ→0

d(λ)
√

log(1/λ) ≥ C,

where d(λ) denotes the distance between χ and Bλ. The estimate (1.3)
was also generalized in [dR09] for the Selberg class.

In this article, we explain how to drop off the conditions of type (1.2)
used in [DFMR11]. On the one hand, we give a Beurling-Nyman cri-
terion of the same type of [BDBLS00] and [dR07] but for a wide class
of Dirichlet series (we do not need any Euler product or functional
equation). Let us mention that our class of Dirichlet series coincides
with the one considered in [dR07] but our subspace of L2 functions
is somehow more general. On the other hand, we also obtain explicit
zero free regions of the same shape of [DFMR11] without the technical
conditions. In particular, these give new explicit zero free regions that
are easier to deal with. For these purposes we will give two different
and independent (but complementary) methods.
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2. Notation

In this section, we will give some notation and recall some results
that were obtained in [DFMR11] (we shall refer to this article several
times). For r ∈ R, we denote by Πr the half-plane

Πr = {s ∈ C : <(s) > r}.
We fix a Dirichlet series L(s) =

∑
n≥1

an
ns

satisfying the following con-
ditions:

• For every ε > 0, we have an = Oε(n
ε).

• There exists σ0 < 1 such that the function s 7→ L(s) admits a
meromorphic continuation to <(s) > σ0 with a unique pole of
order mL at s = 1.
• The function s 7→ (s − 1)mLL(s) is analytic with finite order

in Πσ0 .

The growth condition on the coefficients (an)n implies that L(s) is an
absolutely convergent Dirichlet series for <(s) > 1. As already men-
tioned, this class of Dirichlet series was already introduced in [dR07]
with σ0 = 1

2
. We also consider a function ϕ : [0,+∞[−→ C such that

• ϕ is supported on [0, 1] and is locally bounded on (0, 1).
• ϕ(x) = O(x−σ0) when x→ 0.
• ϕ(x) = O((1− x)−σ1) when x→ 1−, for some σ1 < 1/2.

We recall that the (unnormalized) Mellin transform of a Lebesgue-
measurable function ϕ : [0,+∞[→ C is the function ϕ̂ defined by

ϕ̂(s) =

∫ +∞

0

ϕ(t)ts
dt

t
(s ∈ C),

whenever the integral is absolutely convergent. If ϕ satisfies the con-
ditions above, we easily see that s 7−→ ϕ̂(s) is analytic on Πσ0 . The
normalized Mellin transformM : ϕ 7→ 1√

2π
ϕ̂ is a unitary operator that

maps the space L2
∗
(
(0, 1), dt

t1−2σ

)
onto H2(Πσ), where L2

∗
(
(0, 1), dt

t1−2σ

)
is the subspace of functions in L2

(
(0,+∞), dt

t1−2σ

)
that vanish almost

everywhere on (1,+∞), and H2(Πσ) is the Hardy space of analytic
functions f : Πσ → C such that ‖f‖2 <∞ with

(2.1) ‖f‖2 = sup
x>σ

(∫ +∞

−∞
|f(x+ it)|2dt

) 1
2

.
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We also recall that M extends to a unitary operator from the space
L2((0,+∞), du

u1−2σ ) onto L2(σ + iR) (use the Fourier–Plancherel’s the-
orem and the change of variable going from the Fourier transform to
the Mellin transform). With our choices of L and ϕ we define

(2.2) ψ(u) = res (L(s)ϕ̂(s)us, s = 1)−
∑
n<u

anϕ
(n
u

)
(u ∈ R∗+),

where res(F (s), s = 1) denotes the residue of the meromorphic func-
tion F at s = 1. We recall that by definition of ψ, there exists
(p0, p1, . . . , pmL−1) ∈ CmL with pmL−1 6= 0 such that

(2.3) ψ(u) = u

mL−1∑
k=0

pk(log u)k (0 < u < 1).

Indeed, since the function s 7→ L(s)ϕ̂(s) has a pole of order mL at
s = 1, we can write

(2.4) L(s)ϕ̂(s) =

mL−1∑
k=0

k!pk
(s− 1)k+1

−H(s) (s ∈ Πσ0 , s 6= 1),

with pmL−1 6= 0 and where H is some analytic function in Πσ0 . For
each 0 ≤ k ≤ mL − 1, we have

res

(
us

(s− 1)k+1
, s = 1

)
=
u(log u)k

k!
,

which gives

(2.5) res (L(s)ϕ̂(s)us, s = 1) = u

mL−1∑
k=0

pk(log u)k.

Now (2.3) follows from ψ(u) = res (L(s)ϕ̂(s)us, s = 1) if 0 < u < 1.
Hence, it is clear that for r > σ0, the function t 7→ tr−σ0ψ(1

t
) belongs

to L2
(
(0,+∞), dt

t1−2σ0

)
if and only if

(2.6) r < 1 and

∫ +∞

1

|ψ(t)|2 dt

t1+2r
< +∞.

By [DFMR11, Theorem 2.1] this is equivalent to r < 1 and the fact
that the function t 7−→ L(r+it)ϕ̂(r+it) belongs to L2((−∞,+∞), dt).
In the classical examples such as the Selberg class, such a real number
r exists, and moreover, each r′ ∈ [r, 1) also satisfies (2.6).

In the sequel, we assume that there exists r0 > σ0 satisfy-
ing (2.6) and we fix r0 once and for all.
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We set

S :=
⋃
`≥1

(0, 1]` × C`.

Each A ∈ S is a couple (α, c) where α = (α1, . . . , α`) ∈ (0, 1]` and
c = (c1, . . . , c`) ∈ C` for some ` ≥ 1. That ` is called the length of A
and is noted `(A).
A sequence A = (α, c) ∈ S is called m-admissible1 if

`(A)∑
j=1

cjαj(logαj)
k = 0 for any 0 ≤ k ≤ m− 1.

We denote by S] the subset of the sequences A ∈ S that are mL-
admissible. To each A = (α, c) ∈ S, we associate the function fA,r
defined by

(2.7) fA,r(t) := tr−σ0
`(A)∑
j=1

cjψ
(αj
t

)
(t > 0).

Then for r0 ≤ r < 1 and for A ∈ S, we have fA,r ∈ L2
(
(0,+∞), dt

t1−2σ0

)
.

Futhermore, if A ∈ S], then the function fA,r is identically zero on
(1,+∞) (see [DFMR11, Theorem 4.3]).

We set

(2.8) Kr := Span{fA,r : A ∈ S} (r0 ≤ r < 1)

and

(2.9) K]
r := Span{fA,r : A ∈ S]} (r0 ≤ r < 1).

In both cases the (closed) span is taken with respect to L2
(
(0,+∞), dt

t1−2σ0

)
.

For λ ∈ Πσ0 , we set

wλ(t) := tλ−2σ0χ(0,1)(t) (t > 0)

and for r0 ≤ r < 1 we let

(2.10) dr(λ) := dist(wλ, Kr) and d]r(λ) := dist(wλ, K
]
r).

Since K]
r ⊂ Kr, it is immediate that

(2.11) dr(λ) ≤ d]r(λ)
(
r0 ≤ r < 1, λ ∈ Πσ0

)
.

We can now state Theorem 2.2 of [DFMR11]2 :

1These are exactly the conditions we mentioned in the introduction.
2The reader should be careful that in [DFMR11] the subspace K]

r and the dis-
tance d]r(λ) were denoted by Kr and dr(λ).
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Theorem 2.1. Let λ ∈ Πσ0. Then the function L does not vanish on
r − σ0 +D]

r(λ) where

D]
r(λ) :=

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ <√1− 2(<(λ)− σ0)d]r
2
(λ)

}
.

It is also obtained the following result (see [DFMR11, Theorem 2.4]):

Theorem 2.2. Suppose that the function ϕ̂ does not vanish on the half-

plane Πr, that lim supx→+∞
log |ϕ̂(x+r−σ0)|

x
= 0 and that a1 6= 0. Then

the following assertions are equivalent:

(1) The function L does not vanish on the half-plane Πr.
(2) There exists λ ∈ Πσ0 such that d]r(λ) = 0.
(3) For all λ ∈ Πσ0, we have d]r(λ) = 0.
(4) We have K]

r = L2
∗((0, 1), dt/t1−2σ0).

This last theorem is exactly a Beurling-Nyman’s criterion for L. The
key point in the proof of these two results is the fact that the Mellin
transform of each fA,r ∈ K]

r is the product of L(s)ϕ̂(s) with a suitable
function gA(s) that kills the pole at s = 1. In that case, the function
L(s)ϕ̂(s)gA(s) belongs to the Hardy space H2(Πr), and we may use the
theory of analytic reproducing kernel Hilbert spaces.

In this paper, we are interested in the following question: is it pos-
sible to replace the distance d]r(λ) by dr(λ) and the space K]

r by Kr in
both previous results? Of course if mL = 0, then S = S] and Kr = K]

r

and there is nothing to do! So we assume in the following that mL ≥ 1.
When we replace K]

r by Kr, the pole at s = 1 coming from the Dirich-
let series is no longer compensated. In particular, for A ∈ S \ S], the
function L(s)ϕ̂(s)gA(s) does not belong to the Hardy space H2(Πr).
There are two natural ideas to overcome this problem.

First, for a function fA,r with A ∈ S we can find A′ ∈ S such that
fA,r + fA′,r ∈ K]

r and such that ‖fA,r + fA′,r−wλ‖ can be controlled by
‖fA,r−wλ‖. This strategy is developed through sections 3 and 4. That
allows us to state in our main theorem that d]r(λ) ≤ Cdr(λ) for some ex-
plicit constant C. With this inequality and (2.11), we may use directly
the results of [DFMR11]. In particular, we obtain a Beurling-Nyman’s
criterion involving dr(λ) for our general class of Dirichlet series (gen-
eralizing the previous results of [BDBLS00] and [dR06]) and as a by
product we also obtain zero free discs (but that are less good than the
one in [DFMR11]).

For the second method, we show in Sections 5 and 6 that we can com-
pensate the pole at s = 1 by multiplying the function L(s) by a suitable
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function involving a Blaschke factor so that the new function is in the
Hardy space H2(Πr). This enables us to follow the techniques used in
[DFMR11] to obtain explicit zero-free discs. Those new zero free discs
improve the ones in [DFMR11] and are easier to describe. Neverthe-
less, the presence of the Blaschke factor causes some differences and
brings some technical calculations; in particular, we must replace the
function wλ by another function ur,λ (which lies on (0,+∞)). Then the
zero-free discs obtained are expressed in terms of the distance of ur,λ
to the space Kr.

3. Auxiliary lemmas

3.1. The Pascal matrix. Let m ≥ 1 be an integer. The Pascal matrix
of size m×m is defined by

(3.1) A(m) = (Ai,j)0≤i,j≤m−1 with Ai,j =

(
i+ j

i

)
.

It is known that this is a positive definite symmetric matrix (see [Hig02,

Section 28.4]). Hence its greatest eigenvalue µ
(m)
max trivially satisfies

µ
(m)
max ≤ tr(A(m)). Moreover, its characteristic polynomial χm(X) =

det(XI − A(m)) is palindromic, that is χm(X) = Xmχm(1/X). Then,

its lowest eigenvalue µ
(m)
min is equal to 1/µ

(m)
max. Moreover, using these

two observations and the bound
(

2j
j

)
≤ 4j on the diagonal coefficients,

we get the simple lower bound

(3.2) µ
(m)
min ≥

3

4m − 1
.

It is also proved in [Hig02, Section 28.4] that

µ(m)
max ∼ tr(A(m)) ∼ 4m+1

3
√
πm

, m→ +∞,

which gives the correct order of magnitude of µ
(m)
min as m tends to +∞.

For the first values of m, we have µ
(1)
min = 1, µ

(2)
min = (3−

√
5)/2, µ

(3)
min =

4−
√

15, ... .

Lemma 3.1. For any a > 0 and any (z0, z1, . . . , zm−1) ∈ Cm, we have∫ +∞

0

∣∣∣∣∣
m−1∑
j=0

zj
tj

j!

∣∣∣∣∣
2

e−at dt ≥ µm

m−1∑
j=0

1

a2j+1
|zj|2,

where µm is the lowest eigenvalue of the Pascal matrix defined in (3.1).
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Proof. We restrict the proof to the case a = 1 since the general case
follows from∫ +∞

0

∣∣∣∣∣
m−1∑
j=0

zj
tj

j!

∣∣∣∣∣
2

e−at dt =
1

a

∫ +∞

0

∣∣∣∣∣
m−1∑
j=0

zj
aj
tj

j!

∣∣∣∣∣
2

e−t dt.

Expanding the integral and using the identity
∫ +∞

0
tne−t dt = n!, we

have

∫ +∞

0

∣∣∣∣∣
m−1∑
j=0

zj
tj

j!

∣∣∣∣∣
2

e−t dt =
∑

0≤i,j≤m−1

zizj
(i+ j)!

i!j!
= tZ̄A(m)Z,

where Z is the column vector t(z0, z1, . . . , zm−1) and A(m) is the Pascal
matrix defined in (3.1). It remains to note that if A is a hermitian
positive definite matrix, then tZ̄AZ ≥ µ

∑m−1
j=0 |zj|2, where µ is the

lowest eigenvalue of A. �

Remark 3.2. Taking t(z0, z1, . . . , zm−1) to be an eigenvector for the
smallest eigenvalue, we see that the lower bound in the lemma is opti-
mal.

3.2. A linear system.

Lemma 3.3. Let m ≥ 1, let P = (p0, p1, . . . , pm−1) ∈ Cm with pm−1 6=
0, and let β = (β0, . . . , βm−1) ∈ Cm. Then the system

βk =
k∑
i=0

(
i+m− 1− k

i

)
pi+m−1−k yi (0 ≤ k ≤ m− 1)

of unknown y = (y0, . . . , ym−1) has a unique solution in Cm and for
such a solution we have

max
0≤k≤m−1

|yk| ≤ ξ(P )
m−1∑
k=0

|βk|,

where

ξ(P ) =


1
|p0| if m = 1

1
|pm−1|

1 + ‖P‖∞
|pm−1|

(
m‖P‖∞
|pm−1|

)m−1

− 1

m ‖P‖∞
|pm−1| − 1

 if m ≥ 2,

and ‖P‖∞ = max0≤i≤m−1 |pi|.
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Proof. If M = (Mi,j)0≤i,j≤m−1 is a m×m matrix with coefficients in C,
we set

‖M‖∞ := max
0≤i,j≤m−1

|Mi,j|.

The system is triangular and the associated matrix M is of the form
M = pm−1D−N where D is the diagonal matrix with diagonal coeffi-
cients di,i =

(
m−1
i

)
, 0 ≤ i ≤ m− 1, and N is nilpotent and triangular.

Since pm−1 6= 0, the matrix is invertible so the system has a unique
solution and

max
0≤k≤m−1

|yk| ≤ ‖(pm−1D −N)−1‖∞
m−1∑
k=0

|βk|.

It remains to bound ‖(pm−1D−N)−1‖∞. The expected bound is trivial
for m = 1 so we may assume that m ≥ 2. We first note that M =
pm−1D(I − N1

pm−1
), where N1 = D−1N . Hence,

M−1 =
1

pm−1

m−1∑
j=0

N j
1D
−1

pjm−1

and

(3.3) ‖M−1‖∞ ≤
1

|pm−1|

m−1∑
j=0

‖N j
1D
−1‖∞

|pm−1|j
.

Since D is a diagonal matrix whose diagonal coefficients are at least
1, we have ‖N j

1D
−1‖∞ ≤ ‖N j

1‖∞, hence ‖N j
1D
−1‖∞ ≤ mj−1‖N1‖j∞ if

j ≥ 1. Moreover, the coefficient on the k-th row and the i-th column
in N1 has absolute value

|pi+m−1−k|
(
i+m−1−k

i

)(
m−1
k

) = |pi+m−1−k|
k−i−1∏
j=0

k − j
m− 1− j

(k ≥ i+ 1),

which is clearly ≤ |pi+m−1−k|. Therefore, we get ‖N1‖∞ ≤ max
0≤i≤m−1

|pi|.
Using (3.3) and setting q = max0≤i≤m−1 |pi/pm−1|, we obtain using the
fact q ≥ 1, that

‖M−1‖∞ ≤ 1

|pm−1|
+

1

|pm−1|

m−1∑
j=1

mj−1qj

=
1

|pm−1|

(
1 + q

(mq)m−1 − 1

mq − 1

)
,

which gives the expected result.
�
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3.3. A Vandermonde system.

Lemma 3.4. Given a vector (y1, y2, . . . , ym) ∈ Cm, the unique solution
of the system

(3.4)
m∑
j=1

ji−1xj = yi, (1 ≤ i ≤ m),

satisfies
m∑
i=1

|xi| ≤ ((m− 1)2m + 1) max
1≤j≤m

|yj|.

Proof. The result is trivial for m = 1, since the system then reduces
to the equation x1 = y1. We may now assume m ≥ 2. Let Vm =
(ji−1)1≤i,j≤m be the vandermonde matrix associated to the system. It
is known [Hig02, page 416] that the inverse of Vm is given by Wm =
(wi,j)1≤i,j≤m, where

wi,j =
(−1)m−jσm−j(1, 2, . . . , î, . . . ,m)∏

1≤k≤m
k 6=i

(i− k)
,

and σk is the k-th symmetric polynomial in m− 1 indeterminates and
where the notation (1, 2, . . . , î, . . . ,m) means that we omit the term i.
Hence the unique solution of (3.4) satisfies

m∑
i=1

|xi| ≤

( ∑
1≤i,j≤m

|wi,j|

)
max

1≤j≤m
|yj|.

It remains to prove that
∑

1≤i,j≤m |wi,j| = (m−1)2m+1. First note that

the denominator of |wi,j| is (i− 1)!(m− i)!. Moreover, the numerator

of |wi,j| is σm−j(1, 2, . . . , î, . . . ,m). Then,

m∑
j=1

|wi,j| =
1

(i− 1)!(m− i)!

m−1∑
j=0

σj(1, 2, . . . , î, . . . ,m)

=
1

(i− 1)!(m− i)!
∏

1≤k≤m
k 6=i

(1 + k)

=
(m+ 1)!

(i− 1)!(m− i)!(1 + i)
= (m+ 1)

(
m

i

)
−
(
m+ 1

i+ 1

)
.

By summing the last equality over 1 ≤ i ≤ m, we get the expected
result. �
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4. A Beurling-Nyman’s criterion

To simplify the notation, the order mL of the pole of the Dirichlet
series L will be noted m in this section. We recall that r0 is a real
number such that σ0 < r0 < 1 and satisfying (2.6).
Let w ∈ L2

∗((0, 1), dt/t1−2σ0), we consider the distance dist(w,Kr) and
dist(w,K]

r), where Kr and K]
r are defined in (2.8) and (2.9). We have

trivially dist(w,Kr) ≤ dist(w,K]
r). We can now state the main result

which gives a bound of dist(w,K]
r) in function of dist(w,Kr):

Theorem 4.1. With the previous notation, there exists a positive func-
tion r 7→ θ(ψ, r) defined and nonincreasing on [r0, 1) such that

(4.1) dist(w,K]
r) ≤

(
1 + θ(ψ, r)

√
1− r

)
dist(w,Kr)

for each r ∈ [r0, 1), and such that

lim
r→1

θ(ψ, r)
√

1− r = 0.

Remark 4.2. An explicit choice of θ(ψ, r) will be given in (4.7), inside
the proof of Theorem 4.1.

In the sequel, we will introduce the following notation. For the m-uplet
P = (p0, . . . , pm−1) that has been introduced in (2.3), we set

(4.2) ‖P‖2 :=

∫ 1

0

∣∣∣∣∣
m−1∑
i=0

pi(log u)i

∣∣∣∣∣
2

udu

1/2

.

Note that ‖P‖2 =
(∫ 1

0
|ψ(u)|2 du

u

)1/2

. Furthermore we set

(4.3) ‖ψ‖r =

(∫ +∞

1

|ψ(t)|2 dt

t1+2r

)1/2

(r0 ≤ r < 1).

Note that the function r 7→ ‖ψ‖r is nonincreasing on [r0, 1). Recall that
the function fA,r defined in (2.7) belongs to L2((0,+∞), dt/t1−2σ0). For
f ∈ L2((0,+∞), dt/t1−2σ0), we note

‖f‖2 =

∫ +∞

0

|f(t)|2 dt

t1−2σ0
.

Before embarking on the proof of Theorem 4.1, we need to establish
the following crucial lemma.
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Lemma 4.3. Let A = (α, c) ∈ S. There exists A′ ∈ S such that
fA,r + fA′,r ∈ K]

r and

‖fA,r + fA′,r − w‖ ≤ ‖fA,r − w‖+ Λ(m, r) max
0≤k≤m−1

∣∣∣∣∣∣
`(A)∑
j=1

cjαj(logαj)
k

∣∣∣∣∣∣ ,
for any w ∈ L2

∗((0, 1), dt/t1−2σ0), where

Λ(m, r) := ((m− 1)2m + 1) max(em, e(1−r)m)
(
‖P‖2

2 + ‖ψ‖2
r

)1/2
,

and ‖P‖2 and ‖ψ‖r have been introduced in (4.2) and (4.3) respectively.

Proof. Let A = (α, c) ∈ S. We set

yk :=

`(A)∑
j=1

cjαj(logαj)
k (0 ≤ k ≤ m− 1).

Our first step is to construct a sequence A′ = (α′, c′) ∈ S such that
fA,r + fA′,r ∈ K]

r. We choose

α′j := e−j (1 ≤ j ≤ m).

By Lemma 3.4, there exists a unique (x1, . . . , xm) ∈ Cm such that

m∑
j=1

xj(logα′j)
k = −yk (0 ≤ k ≤ m− 1),

and moreover
m∑
i=1

|xi| ≤ ((m− 1)2m + 1) max
0≤k≤m−1

|yk|.

Now by choosing

c′j :=
xj
α′j

(1 ≤ j ≤ m)

and using the definition of the yk, we get

(4.4)
m∑
j=1

c′jα
′
j(logα′j)

k +

`(A)∑
j=1

cjαj(logαj)
k = 0 (0 ≤ k ≤ m− 1),

and

m∑
i=1

|c′iα′i| ≤ ((m− 1)2m + 1) max
0≤k≤m−1

∣∣∣∣∣∣
`(A)∑
j=1

cjαj(logαj)
k

∣∣∣∣∣∣ .
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Moreover, since 0 < α′m ≤ α′j for 1 ≤ j ≤ m, this last condition yields

(4.5)
m∑
j=1

|c′j| ≤ em((m− 1)2m + 1) max
0≤k≤m−1

∣∣∣∣∣∣
`(A)∑
j=1

cjαj(logαj)
k

∣∣∣∣∣∣ .
Now, by setting A′ := (α′, c′), the condition (4.4) immediately gives

fA,r + fA′,r ∈ K]
r,

and in particular fA,r(t)+fA′,r(t) = 0 for t > 1 (see [DFMR11, Theorem
4.3]). Furthermore, w is supported on (0, 1), hence we have

‖fA,r + fA′,r − w‖ =

(∫ 1

0

|fA,r(t) + fA′,r(t)− w(t)|2 dt

t1−2σ0

)1/2

≤ ‖fA,r − w‖+

(∫ 1

0

|fA′,r(t)|2
dt

t1−2σ0

)1/2

from which we deduce

(4.6) ‖fA,r+fA′,r−w‖ ≤ ‖fA,r−w‖+
m∑
j=1

|c′j|
(∫ 1

0

|ψ(
α′j
t

)|2 dt

t1−2r

)1/2

.

Taking (4.5) into account, the lemma follows immediately from the
bounds ∫ 1

0

|ψ(
α′j
t

)|2 dt

t1−2r
≤ max(1, e−2rm)

(
‖P‖2

2 + ‖ψ‖2
r

)
for each 1 ≤ j ≤ m. For proving these inequalities, we write∫ 1

0

|ψ(
α′j
t

)|2 dt

t1−2r
= (α′j)

2r

∫ +∞

α′j

|ψ(t)|2 dt

t1+2r

= (α′j)
2r

∫ 1

α′j

|ψ(t)|2 dt

t1+2r
+ (α′j)

2r‖ψ‖2
r.

Considering the cases r > 0 and r ≤ 0, we have

(α′j)
2r

t2r
≤ max

(
1, e−2rm

)
(1 ≤ j ≤ m, α′j ≤ t ≤ 1),

which gives

(α′j)
2r

∫ 1

α′j

|ψ(t)|2 dt

t1+2r
≤ max

(
1, e−2rm

)
‖P‖2

2.

With the same method, we obtain

(α′j)
2r‖ψ‖2

r ≤ max
(
1, e−2rm

)
‖ψ‖2

r

which concludes the proof. �
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Proof of Theorem 4.1. We set

E(r) :=

(
2

+∞∑
k=0

(2− 2r)2k

(k!)2

)1/2

,

and we denote by µm the lowest eigenvalue of the Pascal matrix defined
in (3.1). We are now ready to prove Theorem 4.1 with

(4.7) θ(ψ, r) :=
ξ(ψ)E(r)Λ(m, r)

√
µm

.

where ξ(ψ) := ξ(P ) is defined in Lemma 3.3 and where Λ(m, r) is
defined in Lemma 4.3. It is clear that with this choice, the function
r 7→ θ(ψ, r) is nonincreasing on [r0, 1). In particular, θ(ψ, r) is bounded
on [r0, 1) and then limr→1 θ(ψ, r)

√
1− r = 0.

Let A = (α, c) ∈ S. Assume that the following inequality

(4.8) max
0≤k≤m−1

∣∣∣∣∣∣
`(A)∑
j=1

cjαj(logαj)
k

∣∣∣∣∣∣ ≤ ‖fA,r − w‖ξ(ψ)E(r)

√
1− r
µm

holds. Then we complete the proof of Theorem 4.1 as follows: according
to Lemma 4.3, there exists A′ ∈ S such that fA,r + fA′,r ∈ K]

r and

‖fA,r + fA′,r − w‖ ≤ ‖fA,r − w‖+ Λ(m, r) max
0≤k≤m−1

∣∣∣∣∣∣
`(A)∑
j=1

cjαj(logαj)
k

∣∣∣∣∣∣ ,
for any w ∈ L2

∗((0, 1), dt/t1−2σ0). Hence, using (4.8) and the inequality
dist(w,K]

r) ≤ ‖fA,r + fA′,r − w‖, we have

dist(w,K]
r) ≤

(
1 + ξ(ψ)E(r)Λ(m, r)

√
1− r
µm

)
‖fA,r − w‖,

and (4.1) follows immediately by taking the infimum over A ∈ S.
It remains to prove (4.8). Since w(t) = 0 for t > 1, we have

∫ +∞

1

∣∣∣∣∣∣
`(A)∑
j=1

cjψ
(αj
t

)∣∣∣∣∣∣
2

dt

t1−2r
=

∫ +∞

1

|fA,r(t)|2
dt

t1−2σ0
≤ ‖fA,r − w‖2.
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Hence, using the notation in (2.3), one has

‖fA,r − w‖2 ≥
∫ +∞

1

∣∣∣∣∣∣
`(A)∑
j=1

cjψ
(αj
t

)∣∣∣∣∣∣
2

dt

t1−2r

=

∫ +∞

1

∣∣∣∣∣∣
`(A)∑
j=1

cj
αj
t

m−1∑
i=0

pi
(

logαj − log t
)i∣∣∣∣∣∣

2

dt

t1−2r

=

∫ +∞

1

∣∣∣∣∣
m−1∑
k=0

(−1)m−1−k(log t)m−1−kβk

∣∣∣∣∣
2

dt

t3−2r

=

∫ +∞

0

∣∣∣∣∣
m−1∑
k=0

(−1)m−1−kum−1−kβk

∣∣∣∣∣
2

e−2(1−r)u du.

where we have set for 0 ≤ k ≤ m− 1

βk :=
k∑
i=0

(
i+m− 1− k

i

)
pi+m−1−k

`(A)∑
j=1

cjαj(logαj)
i.

Lemma 3.3 then gives

max
0≤k≤m−1

∣∣∣∣∣∣
`(A)∑
j=1

cjαj(logαj)
k

∣∣∣∣∣∣ ≤ ξ(ψ)
m−1∑
k=0

|βk|.

Now, Cauchy’s inequality yields(
m−1∑
k=0

|βk|

)2

≤

(
m−1∑
k=0

(2− 2r)2k+1

(k!)2

)(
m−1∑
k=0

|k!βk|2

(2− 2r)2k+1

)
,

and using Lemma 3.1 with the choice zk = k!βk and a = 2 − 2r, one
has

m−1∑
k=0

|k!βk|2

(2− 2r)2k+1
≤ 1

µm

∫ +∞

0

∣∣∣∣∣
m−1∑
k=0

(−1)m−1−kum−1−kβk

∣∣∣∣∣
2

e−2(1−r)u du.

Then we deduce

m−1∑
k=0

|βk| ≤
1
√
µm

(
m−1∑
k=0

(2− 2r)2k+1

(k!)2

)1/2

‖fA,r − w‖.

≤ E(r)

√
1− r
µm
‖fA,r − w‖.
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This ends the proof of (4.8). �

Now, we apply Theorem 4.1 with w(t) = wλ(t) = tλ−2σ0χ(0,1)(t) where
λ ∈ Πσ0 . In that case, we denote dist(wλ, Kr) (resp. dist(wλ, K

]
r)) by

dr(λ) and d]r(λ) (see (2.10) and (2.11)).

Corollary 4.4. With the previous notation, we have

(4.9) dr(λ) ≤ d]r(λ) ≤
(
1 + θ(ψ, r)

√
1− r

)
dr(λ)

for all r ∈ [r0, 1) and λ ∈ Πσ0.

Theorem 4.1 and Corollary 4.4 give directly the Beurling-Nyman cri-
terion we had in mind (i.e. without the technical conditions):

Corollary 4.5. Let r0 ≤ r < 1. Assume that ϕ̂ does not vanish on

the half-plane Πr, that lim supx→+∞
log |ϕ̂(x+r−σ0)|

x
= 0 and that a1 6= 0.

Then the following assertions are equivalent:

(1) The function L does not vanish on the half-plane Πr.
(2) There exists λ ∈ Πσ0 such that dr(λ) = 0.
(3) For all λ ∈ Πσ0, we have dr(λ) = 0.
(4) L2

∗((0, 1), dt/t1−2σ0) ⊂ Kr.

Proof. According to Corollary 4.4, we have

dr(λ) = 0⇐⇒ d]r(λ) = 0.

Hence, the equivalence between the first three assertions follows imme-
diately from Theorem 2.2. The implication (4) =⇒ (3) is trivial. The
remaining implication (1) =⇒ (4) comes again from Theorem 2.2 and
the fact that K]

r ⊂ Kr. �

As already mentioned, this Beurling-Nyman’s criterion generalizes the
previous result obtained in [BDBLS00] for the Riemann zeta function.
It also generalizes a little bit the result obtained in [dR07] for the case
where ϕ(t) = χ(0,1)(t) and λ = r = 1

2
. As an illustration, take a

Dirichlet series L(s) =
∑

n≥1 ann
−s in the Selberg class with a1 6= 0

(otherwise the Dirichlet series is zero by the multiplicative properties of
an). Then L(s) has an analytic continuation to C \ {1} and we choose
σ0 = 0. Let d be the degree of L and take

ϕ(t) =
χ(0,1)(t)

(1− t)σ1
where σ1 <

1

2
− d

4
.

Then, we may choose r0 = 1/2 so that ψ ∈ L2((1,∞), du
u1+2r0

) (see
[DFMR11, Section 7.3]). Moreover, for λ = r = 1/2, the function
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tλ̄χ(0,1) ∈ Kr if and only if the function χ(0,1) belongs to the space

Bσ1 = span{t 7→
`(α)∑
j=1

cjψ
(αj
t

)
: (α, c) ∈ S},

where the closed linear span here is taken with respect to the space
L2((0,∞), dt). Hence:

Corollary 4.6. The function L(s) does not vanish for <(s) > 1/2 if
and only if χ(0,1) ∈ Bσ1.

5. The function fA,r when A ∈ S

From this section, we investigate an other method for compensating
the pole at s = 1 coming from L(s).

Recall that we have fixed a real number r0 > σ0 satisfying (2.6) and
then for any r such that r0 ≤ r < 1, we have ψ ∈ L2((0,+∞), du

u1+2r ).
Recall also that for any A = (α, c) ∈ S and r0 ≤ r < 1, the function
fA,r, defined by

fA,r(t) = tr−σ0
`(α)∑
j=1

cjψ
(αj
t

)
, (t > 0),

belongs to the space L2((0,+∞), dt
t1−2σ0

). If f ∈ L2((0,+∞), dt/t1−2σ0),
we note

‖f‖2 =

∫ +∞

0

|f(t)|2 dt

t1−2σ0
.

Lemma 5.1. Let r0 ≤ r < 1 and A = (α, c) ∈ S. Then

(a) We have

lim
r→r0
r>r0

‖fA,r − fA,r0‖ = 0.

(b) The integral ∫ +∞

0

fA,r(t)t
s−1 dt

is absolutely convergent if σ0 + r0 − r < <(s) < σ0 + 1− r.

Proof. For the first point, note that

(5.1) fA,r(t) = tr−r0fA,r0(t) = tr−r1fA,r1(t) (r0 ≤ r, r1 < 1),

which proves that fA,r(t) tends pointwise to fA,r0(t) on (0,+∞), as
r → r0. Moreover, if r1 is such that r < r1 < 1, then, using the two
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equalities in (5.1) (depending whether t < 1 or t ≥ 1), we easily check
that

|fA,r(t)| ≤ |fA,r0(t)|+ |fA,r1(t)|, t > 0.

Since the function t 7→ |fA,r0(t)|+ |fA,r1(t)| is in L2((0,+∞), dt
t1−2σ0

), an
application of Lebesgue’s theorem gives the result.
For the second point, by linearity and using a change of variable, it is
sufficient to prove that the integral∫ +∞

0

|ψ(t)|
tσ+r+1−σ0

dt

is convergent if σ0 + r0 − r < σ < σ0 + 1− r which is equivalent to the
convergence of ∫ +∞

0

|ψ(t)|
t1+γ

dt

if r0 < γ < 1. On the one hand, ψ(t) = tP (log t) for t ∈ (0, 1) and we
have ∫ 1

0

|ψ(t)|
t1+γ

dt =

∫ 1

0

|P (log t)|
tγ

dt.

This last integral is convergent if γ < 1. On the other hand, using
Cauchy–Schwarz inequality, we get∫ +∞

1

|ψ(t)|
t1+γ

dt ≤
(∫ +∞

1

|ψ(t)|2

t1+2r0
dt

)1/2(∫ +∞

1

dt

t1+2γ−2r0

)1/2

.

Now the first integral on the right hand side is finite by hypothesis and
the second integral is finite if and only if r0 < γ, which concludes the
proof. �

If A = (α, c) ∈ S, we let

gA(s) =

`(α)∑
j=1

cjα
s
j (s ∈ C).

Lemma 5.2. Let r0 ≤ r < 1 and s ∈ C with σ0 + r0 − r < <(s) <
σ0 + 1− r. Then

(5.2) f̂A,r(s) = −L(s+ r − σ0)ϕ̂(s+ r − σ0)gA(s+ r − σ0).

If r = r0 and s = σ0 + it, the equality (5.2) holds for almost every
t ∈ R.

Proof. For r0 < <(s) < 1, we claim that

(5.3) −L(s)ϕ̂(s) =

∫ +∞

0

ψ

(
1

t

)
ts−1dt.
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Indeed , on the one hand, by [DFMR11, Lemma 3.1], we have

(5.4) H(s) =

∫ 1

0

ψ

(
1

t

)
ts−1 dt (<(s) > 1),

where H is the analytic function on Πσ0 introduced in (2.4). Since the
function t 7→ ψ(1

t
)χ[0,1](t) belongs to L2

∗((0, 1), dt
t1−2r0

), the function s 7→∫ 1

0
ψ
(

1
t

)
ts−1 dt is analytic on Πr0 . Hence, the analytic continuation

principle implies that the equality (5.4) is satisfied for all s ∈ Πr0 . On
the other hand, by an easy induction argument, we have

1

(k − 1)!

∫ 1

0

(log t)k−1t−s dt = − 1

(s− 1)k
(<(s) < 1).

Thus, using (2.3), we get

(5.5)

∫ 1

0

ψ(t)t−s−1 dt = −
mL−1∑
k=0

k!pk
(s− 1)k+1

(<(s) < 1).

Using (5.4) and (5.5), we obtain, for r0 < <(s) < 1,

−L(s)ϕ̂(s) = H(s)−
mL−1∑
k=0

k!pk
(s− 1)k+1

=

∫ 1

0

ψ

(
1

t

)
ts−1 dt+

∫ 1

0

ψ(t)t−s−1 dt,

which yields (5.3). Therefore

−L(s)ϕ̂(s)gA(s) =

∫ +∞

0

ψ

(
1

t

) `(α)∑
j=1

cjα
s
jt
s−1 dt

=

∫ +∞

0

`(α)∑
j=1

cjψ
(αj
t

)
ts−1 dt

=

∫ +∞

0

fA,r(t)t
s+σ0−r−1 dt.

Lemma 5.1 (b) implies that the last integral is absolutely convergent if
r0 < <(s) < 1. Hence

(5.6) −L(s)ϕ̂(s)gA(s) = f̂A,r(s+ σ0 − r), r0 < <(s) < 1.

We conclude the proof of (5.2) using the change of variable s 7−→
s− σ0 + r.
For the second part, take r such that r0 < r < 1. Now, we know that

(5.7) f̂A,r(σ0 + it) = −L(r + it)ϕ̂(r + it)gA(r + it).
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By Lemma 5.1 (a), the sequence f̂A,rn tends to f̂A,r0 in L2(σ0 + iR),
for any sequence (rn)n tending to r0 (since the Mellin transform is an
isometry from L2((0,∞), dt/t1−2σ0) onto L2(σ0 +iR)). Using a classical
result, this sequence (rn)n can be chosen so that

lim
n→+∞

f̂A,rn(σ0 + it) = f̂A,r0(σ0 + it)

for almost all t ∈ R. The equation (5.7) is now sufficient to complete
the proof. �

We need to fix some other notation. If r ∈ R and λ ∈ Πr, we denote
by kλ,r (respectively by bλ,r) the reproducing kernel of H2(Πr) (respec-
tively the elementary Blaschke factor of H2(Πr)) corresponding to the
point λ. In others words, we have for kλ,r

(5.8) kλ,r(s) =
1

2π

1

s− 2r + λ̄
, s ∈ Πr,

and

(5.9) f(λ) = 〈f, kλ,r〉2 =
1

2π

∫ +∞

−∞

f(r + it)

λ− r − it
dt,

for any function f ∈ H2(Πr). We also have for bλ,r

(5.10) bλ,r(s) =
s− λ

s+ λ̄− 2r
, s ∈ Πr,

which is analytic and bounded on the closed half-plane Πr. More pre-
cisely, we have |bλ,r(s)| ≤ 1 if s ∈ Πr and |bλ,r(s)| = 1 if <(s) = r.

Lemma 5.3. Let A = (α, c) ∈ S. Then for all r, r0 ≤ r < 1, the
function

s 7→ L(s)ϕ̂(s)gA(s)bmL1,r (s)

belongs to H2(Πr).

Proof. Recall that

L(s)ϕ̂(s) =

mL−1∑
k=0

k!pk
(s− 1)k+1

−H(s), s 6= 1, s ∈ Πσ0 ,

and according to the proof of Theorem 2.1 in [DFMR11], the function
H belongs to H2(Πr). Therefore

L(s)ϕ̂(s)gA(s)bmL1,r (s) =

mL−1∑
k=0

k!pk
bmL1,r (s)

(s− 1)k+1
gA(s)−H(s)gA(s)bmL1,r (s).
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The functions gA and bmL1,r are bounded on Πr, hence the function s 7→
H(s)gA(s)bmL1,r (s) belongs to H2(Πr). So it is sufficient to prove that
the function

s 7−→
bmL1,r (s)

(s− 1)k+1

belongs to H2(Πr) for every 0 ≤ k ≤ mL−1. Using (5.10) and the fact
that |b1,r(s)| ≤ 1 for s ∈ Πr, we have∣∣∣∣ bmL1,r (s)

(s− 1)k+1

∣∣∣∣ ≤
∣∣∣∣∣ bk+1

1,r (s)

(s− 1)k+1

∣∣∣∣∣ =
1

|s+ 1− 2r|k+1
,

and it is clear that

sup
σ=<(s)>r

(∫ +∞

−∞

dt

|σ + 1− 2r + it|2(k+1)

)
≤

∫ +∞

−∞

dt

((1− r)2 + t2)k+1

< +∞,

which proves that s 7−→ b
mL
1,r (s)

(s−1)k+1 belongs to H2(Πr). �

We now introduce now a function ur,λ of L2((0,∞), dt/t1−2σ0) which
will be used to give explicit zero free regions in terms of the distance
of ur,λ to the subspace Kr (see (6.1) and Theorem 6.4). This function
ur,λ plays the role of the function wλ in Theorem 2.1. For λ ∈ Πσ0 and
t > 0, we define

ur,λ(t) =

(
1 +

A

B

)mL
tλ−2σ0χ(0,1)(t) +Qr,λ(log t)tr−σ0−1χ(1,∞)(t)

with A = 2−2r and B = r+σ0−1−λ and where Qr,λ is the polynomial
defined by

Qr,λ(t) = −
mL−1∑
j=0

(
mL−1−j∑
k=0

(
mL

k

)(
A

B

)mL−k) (−1)jBj

j!
tj.

Note that for 0 < t < 1, we have ur,λ(t) = (1 + A/B)mLwλ(t), but the
function ur,λ is (unlike the function wλ) supported on the whole axis
(0,∞). This is quite natural since Kr is formed by functions which
live on (0,∞) whereas functions of K]

r vanish on (1,∞). Although the
formulae defining ur,λ may appear a little bit complicated, this function
is chosen so that its Mellin transform has the simple following form:

Lemma 5.4. For 2σ0 −<(λ) < <(s) < 1 + σ0 − r, we have

ûr,λ(s) = 2π
kλ,σ0(s)

bmL1,r (s+ r − σ0)
.
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Proof. We compute the inverse Mellin transform of the right hand side
which is defined by

1

2iπ

∫
Re(z)=δ

2π
kλ,σ0(z)

bmL1,r (z + r − σ0)
t−zdz

where δ is any real number such that 2σ0 −<(λ) < δ < 1 + σ0 − r.
If 0 < t < 1, we can push the line of integration to the left. Then we

catch the residue of the function 2π
kλ,σ0 (z)

b
mL
1,r (z+r−σ0)

t−z at the simple pole

z = 2σ0 − λ and we obtain ur,λ(t) for 0 < t < 1.

If t > 1, we can push the line of integration to the right. We catch the
residue of the function at the pole z = σ0 + 1− r which is of order mL.
After a direct computation, we obtain ur,λ(t) for t > 1. �

6. Zero-free regions

For A ∈ S, we set

hA,r(s) = − 1√
2π
L(s+r−σ0)ϕ̂(s+r−σ0)gA(s+r−σ0)bmL1,r (s+r−σ0),

and according to Lemma 5.3, the function hA,r belongs to H2(Πσ0).
Furthermore, hA,r is analytic in Π2σ0−r.

Proposition 6.1. Let r0 satisfying (2.6), let r0 ≤ r < 1, and let
λ ∈ Πσ0. Then L does not vanish on

r − σ0 +

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ <√4π
(
<(λ)− σ0

) |hA,r(λ)|
‖hA,r‖2

}
,

for any A ∈ S.

Remark 6.2. Before proving the proposition, we should recall that for
λ = a+ ib ∈ Πσ0 (a > σ0, b ∈ R) and R ∈ [0, 1], the set{

µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ̄− 2σ0

∣∣∣∣ < R

}
is the open (euclidean) disc whose center is Ω =

(
a+R2(a−2σ0)

1−R2 , b
)

and

radius is 2R(a−σ0)
1−R2 if R ∈ [0, 1[; if R = 1 this set is the half-plane Πσ0 .

Proof of Proposition 6.1. Using Lemma 5.3 and following the proof of
[DFMR11, Corollary 2.3] we obtain that L does not vanish on the disc

r − σ0 +

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ < |hA,r(λ)|
‖hA,r‖2‖kλ‖2

}
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where the norms ‖ · ‖2 are relative to the space H2(Πσ0) (see equa-

tion (2.1)). It remains to note that ‖kλ‖2 =
(
4π
(
<(λ)− σ0

))−1/2
. �

Remark 6.3. For applications, in order to compute
|hA,r(λ)|
‖hA,r‖2

, it is useful

to notice that ‖hA,r‖2 = ‖fA,r‖2. Indeed using the fact that hA,r is not
only in H2(Πσ0) but is analytic on Π2σ0−r and using that |bmL1,r (s)| = 1
if <(s) = r, we obtain

‖hA,r‖2
2 =

∫ ∞
−∞

∣∣∣∣ 1√
2π
L(r + it)ϕ̂(r + it)gA(r + it)

∣∣∣∣2 dt.
Here we used the classical fact (see [Dur70]) for example) that, if a
function h is in H2(Πσ0), then the limit h(σ0 + it) := lim

σ→σ0
>

h(σ + it)

exists for almost all t ∈ R and

‖h‖2
2 =

∫ +∞

−∞
|h(σ0 + it)|2 dt.

By Lemma 5.2, we get

‖hA,r‖2
2 =

∫ ∞
−∞

∣∣∣∣ 1√
2π
f̂A,r(σ0 + it)

∣∣∣∣2 dt.
The result now follows since M is a unitary operator from the space
L2((0,∞), dt/t1−2σ0) onto L2(σ0 + iR).

For λ ∈ Πσ0 , we let

(6.1) δr(λ) = dist(ur,λ, Kr),

where the distance is taken with respect to L2((0,∞), dt/t1−2σ0).

Theorem 6.4. Let r0 satisfying (2.6), let r0 ≤ r < 1, and let λ ∈ Πσ0.
Then L does not vanish on r − σ0 +Dr(λ) where

Dr(λ) :=

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ <√1− 2(<(λ)− σ0)δ2
r(λ)

}
.

Proof. According to proposition 6.1, the function L does not vanish on

r − σ0 +

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ < R

}
with

R =
1

‖kλ,σ0‖2

sup
A∈S

|hA,r(λ)|
‖hA,r‖2

.
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It remains to prove that R2 = 1 − 2(<(λ) − σ0)δ2
r(λ). For this, note

that

R =
1

‖kλ,σ0‖2

sup
A∈S

|〈hA,r, kλ,σ0〉2|
‖hA,r‖2

=
1

‖kλ,σ0‖2

‖PErkλ,σ0‖2,

where Er = spanH2(Πσ0 )(hA,r : A ∈ S) and PEr is the orthogonal projec-

tion from H2(Πσ0) onto the closed subspace Er. Hence, with standard
Hilbert space arguments, we get

(6.2) R2 = 1− dist2(kλ,σ0 , Er)

‖kλ,σ0‖2
2

.

Take any A ∈ S. Using |bmL1,r (r+ it)| = 1, we obtain by Lemma 5.2 and
Lemma 5.4 that

‖kλ,σ0 − hA,r‖2
2 =∫ ∞

−∞

∣∣∣∣kλ,σ0(σ0 + it)

bmL1,r (r + it)
+

1√
2π
L(r + it)ϕ̂(r + it)gA(r + it)

∣∣∣∣2 dt
=

∫ ∞
−∞

∣∣∣∣ 1

2π
ûr,λ(σ0 + it)− 1√

2π
f̂A,r(σ0 + it)

∣∣∣∣2 dt.
Since the Mellin transform is a unitary map, we deduce

‖kλ,σ0 − hA,r‖2
2 = ‖ 1√

2π
ur,λ − fA,r‖2

2.

Thus dist2(kλ,σ0 , Er) = 1
2π

dist2(ur,λ, Kr). Now the desired equality fol-

lows from (6.2) and the fact that ‖kλ,σ0‖2 = (4π(<(λ)− σ0)−1/2. �

Remark 6.5. If ur,λ ∈ Kr for some λ ∈ Πσ0 and some r ≥ r0, then it
follows immediately from Theorem 6.4 that L does not vanish on Πr

(indeed in this case δr(λ) = 0, and then the zero free region obtained
in Theorem 6.4 is exactly the half-plane Πr). We do not know if the
converse is true.

Remark 6.6. The strategy of using the Blaschke factor in order to
kill the pole of L is also successful to prove the implication (2 )⇒ (1 )
in Corollary 4.5 (indeed this is the key implication to prove). For this,
we can follow and generalize the idea given in [dR07, Théorème II].
Suppose that L(s0) = 0 for some s0 ∈ Πr. Then consider

u(s) = bmL1,r (s+ r − σ0)ks0,r(s+ r − σ0), (<(s) ≥ σ0).
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Note that u has roughly the same flavor as ûr,λ. First we have

|u(σ0 + it)| = |bmL1,r (r + it)||ks0,r(r + it)| = |ks0,r(r + it)|,

and t 7−→ ks0,r(r + it) belongs to L2(R), so u ∈ L2(σ0 + iR). We claim
that

(6.3)

∫ +∞

−∞
f̂A,r(σ0 + it)u(σ0 + it) dt = 0

and that

(6.4)

∫ +∞

−∞
kλ,σ0(σ0 + it)u(σ0 + it) dt 6= 0

for every λ ∈ Πσ0 .
Let us prove (6.3). By Lemma 5.2 and Lemma 5.3, we obtain

(6.5)

∫ +∞

−∞
f̂A,r(σ0 + it)u(σ0 + it) dt =

−
∫ +∞

−∞
L(r + it)ϕ̂(r + it)gA(r + it)bmL1,r (r + it)ks0,r(r + it) dt

and the last integral is simply

−〈Lϕ̂gAbmL1,r , ks0,r〉H2(Πr) = −L(s0)ϕ̂(s0)gA(s0)bmL1,r (s0) = 0.

Finally let us prove (6.4). We have∫ +∞

−∞
kλ,σ0(σ0 + it)u(σ0 + it) dt = 〈h, ks0,r〉H2(Πr),

where h(s) = kλ,σ0(s + σ0 − r)bmL1,r (s). Since kλ,σ0 ∈ H2(Πσ0), the
function s 7−→ kλ,σ0(s+σ0− r) belongs to H2(Πr), so h ∈ H2(Πr). We
deduce

〈h, ks0,r〉H2(Πr) = h(s0) = kλ,σ0(s0 + σ0 − r)bmL1,r (s0) 6= 0,

because s0 6= 1. That concludes the proof of (6.4).

Hence, we have constructed a function u ∈ L2(σ0 + iR) which is or-

thogonal to all functions f̂A,r but not orthogonal to kλ,σ0 . Therefore

kλ,σ0 6∈ span(f̂A,r : A ∈ S).

A direct calculation gives
√

2πkλ,σ0 =M(tλ−2σ0χ(0,1)(t)) and since M
is an isometry from L2((0,+∞), du

u1−2σ0
) onto L2(σ0 + iR), we get that

tλ̄−2σ0χ(0,1) 6∈ span(fA,r : A ∈ S) = Kr,

which contradicts (2 ) and concludes the proof.



26 C. DELAUNAY, E. FRICAIN, E. MOSAKI, AND O. ROBERT

Remark 6.7. There are 3 distances involved through this work and
[DFMR11], they are:

• The distance δr(λ) = dist(ur,λ, Kr);

• The distance dr(λ) = dist(tλ−2σ0χ(0,1), Kr);

• The distance d]r(λ) := dist(tλ−2σ0χ(0,1), K
]
r).

We have:

dr(λ) ≤ d]r(λ) ≤ Cdr(λ)

for some C. The first inequality is trivial and the second one is Corol-
lary 4.4. Unfortunately, a direct comparison between δr(λ) and dr(λ)
or d]r(λ) seems to be not obvious to obtain and so we are not able to
compare directly the zero-free discs appearing in Theorem 6.4 and in
Theorem 2.1.

7. Explicit applications

Let L(s) =
∑

n≥1 ann
−s be a Dirichlet series satisfying the conditions

in section 2. We make use of Proposition 6.1 (and of Remark 6.3). Let
us recall that for A = (α, c) ∈ S and r0 ≤ r < 1, the function fA,r,
defined by

fA,r(t) = tr−σ0
`(α)∑
j=1

cjψ
(αj
t

)
,

belongs to L2((0,∞), dt/t1−2σ0). For numerical applications, we have
to estimate the norm of fA,r. From the definition of ψ in (2.2), we let

ψ1(u) = res (L(s)ϕ̂(s)us, s = 1) .

The computations in [DFMR11, equation (4.4)] give the following up-
per bound for the norm of fA,r(t) in L2((0,+∞), dt/t1−2σ0)

‖fA,r‖ ≤
`(α)∑
j=1

|cj|αrj
(
‖ψ1‖L2((0,1), du

u1+2r ) + ‖ψ‖r
)
.

Recall that by definition (see (4.3)), we have ‖ψ‖r = ‖ψ‖L2((1,∞), du
u1+2r ).

Note that we also have the better theoretical upper bound

‖fA,r‖L2((0,∞), dt

t1−2σ0
) ≤ ‖ψ‖L2((0,∞), du

u1+2r )

`(α)∑
j=1

|cj|αrj ,

but it is less convenient for numerical applications. Hence, we deduce
from Proposition 6.1 and Remark 6.3 that L does not vanish in the
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disc

r − σ0 +

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ <√2(<(λ)− σ0) R

}
,

where

R =

∣∣∣L(λ+ r − σ0)ϕ̂(λ+ r − σ0)bmL1,r (λ+ r − σ0)
∑`(α)

j=1 cjα
λ+r−σ0
j

∣∣∣∑`(α)
j=1 |cj|αrj

(
‖ψ1‖L2((0,1), du

u1+2r ) + ‖ψ‖r
) .

In particular, for `(α) = 1 and c1 = α1 = 1, we obtain

Proposition 7.1. With the notation above, L does not vanish on the
disc

r − σ0 +

{
µ ∈ C :

∣∣∣∣ µ− λ
µ+ λ− 2σ0

∣∣∣∣ <√2(<(λ)− σ0) R

}
,

where

R =

∣∣L(λ+ r − σ0)ϕ̂(λ+ r − σ0)bmL1,r (λ+ r − σ0)
∣∣

‖ψ1‖L2((0,1), du
u1+2r ) + ‖ψ‖r

.

7.1. Zero-free discs for ζ. We apply the proposition above to the
case of the Riemann zeta function ζ(s).
We choose σ0 = 0, ϕ(t) = (1− t)−σ1χ(0,1) with

σ1 < 1/2 and max(0, σ1) < r < 1.

We have

ϕ̂(s) =
Γ(s)Γ(1− σ1)

Γ(1 + s− σ1)
.

In [DFMR11, Theorem 7.2], the following bound was obtained

‖ψ‖2
r ≤

1

2r
+ C(σ1)ζ(1 + 2(r − σ1)),

where

C(σ1) =
1

1− 2σ1

+
1

(1− σ1)2(3− 2σ1)
+

ε1

(1− σ1)2
,

with ε1 = 1 if σ1 ≥ 0 and ε1 = −1 if σ1 < 0. Furthermore, in our case
ψ1(u) = u/(1− σ1) so

‖ψ1‖2
L2((0,1), du

u1+2r )
=

1

(1− σ1)2(2− 2r)
.

Hence



28 C. DELAUNAY, E. FRICAIN, E. MOSAKI, AND O. ROBERT

Theorem 7.2. The Riemann zeta function does not vanish in the disc

r +

{
µ ∈ C :

∣∣∣∣µ− λµ+ λ̄

∣∣∣∣ < F (λ, r, σ1)

}
,

where

F (λ, r, σ1) = √
2<(λ) |Γ(λ+ r)Γ(1− σ1)ζ(λ+ r)(λ+ r − 1)|(

C(r, σ1) + 1
(1−σ1)

√
2−2r

) ∣∣Γ(λ+ r + 1− σ1)(λ− r + 1)
∣∣ ,

with C(r, σ1) =
√

1/(2r) + C(σ1)ζ(1 + 2r − 2σ1).

This seems to be more convenient than the zero-free discs that are
given in [DFMR11, Corollary 7.4] (at least, we do not have to optimize
any more the choice of A ∈ S]). As an example, taking λ = 0.01 + 50i,
r = 0.49 and σ1 = 0.4 (these are the same values taken in the numerical
example in [DFMR11]), we obtain that ζ does not vanish in the disc
of center 1

2
+ 50i and radius 1.49 × 10−5 (remark that it is a little bit

better than in [DFMR11] in which the radius is 5.13×10−6). Note also
that we did not optimize the choices of the parameters λ, r and σ1(and
indeed, the choices of the parameters are not the best in order to get
a zero-free region around 1

2
+ 50i).
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